Application of FBG Sensors in Flexible Pavement Monitoring

2011 ◽  
Vol 255-260 ◽  
pp. 3397-3403 ◽  
Author(s):  
Li Tao Geng ◽  
Rui Bo Ren ◽  
Yang Zhong ◽  
Qian Xu

It’s an effective method for measuring and monitoring of structure response of asphalt pavement with sensor to evaluate materials performance and to verify the validity of mechanical model. In this paper, a real-time system is established with FBG temperature and strain sensors. The strain of pavement structure caused by static test, the temperature fluctuation and the strain caused by air temperature variation are monitored with this system. The analytical results were derived by transfer matrix method based on the measured data and then were compared with the monitoring ones. The agreement of experimental observations and calculative results shows the feasibility of FBG sensors in temperature and strain monitoring of asphalt pavement structures and the validity of mechanical model.

2021 ◽  
Vol 16 (2) ◽  
pp. 48-65
Author(s):  
Audrius Vaitkus ◽  
Judita Gražulytė ◽  
Andrius Baltrušaitis ◽  
Jurgita Židanavičiūtė ◽  
Donatas Čygas

Properly designed and maintained asphalt pavements operate for ten to twenty-five years and have to be rehabilitated after that period. Cold in-place recycling has priority over all other rehabilitation methods since it is done without preheating and transportation of reclaimed asphalt pavement. Multiple researches on the performance of cold recycled mixtures have been done; however, it is unclear how the entire pavement structure (cold recycled asphalt pavement overlaid with asphalt mixture) performs depending on binding agents. The main objective of this research was to evaluate the performance of cold in-place recycled asphalt pavements considering binding agents (foamed bitumen in combination with cement or only cement) and figure out which binder leads to the best pavement performance. Three road sections rehabilitated in 2000, 2003, and 2005 were analysed. The performance of the entire pavement structure was evaluated in terms of the International Roughness Index, rut depth, and pavement surface distress in 2013 and 2017.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Song Yang ◽  
Bing Qi ◽  
Zhensheng Cao ◽  
Shaoqiang Zhang ◽  
Huailei Cheng ◽  
...  

The strain responses of asphalt pavement layer under vehicular loading are different from those under falling weight deflectometer (FWD) loading, due to the discrepancies between the two types of loadings. This research aims to evaluate and compare the asphalt layer responses under vehicular loading and FWD loadings. Two full-scale asphalt pavement structures, namely, flexible pavement and semirigid pavement, were constructed and instrumented with strain gauges. The strain responses of asphalt layers under vehicular and FWD loadings were measured and analyzed. Except for field measurements, the finite element (FE) models of the experimental pavements were established to simulate the pavement responses under a wide range of loading conditions. Field strain measurements indicate that the asphalt layer strain under vehicular loading increases with the rising temperature roughly in an exponential mode, while it decreases with the rising vehicular speed approximately linearly. The strain pulses in the asphalt layer generated by FWD loading are different from those induced by vehicular loading. The asphalt layer strains generated by FWD loading are close to those induced by low vehicular speed (35 km/h). The results from the FE model imply that the asphalt layer strains under FWD loading and vehicular loading are distributed similarly in the depth profile. For flexible pavement, the position of critical strain shifts gradually from the bottom of the asphalt layer to the mid-depth of the layer, as the temperature increases. For semirigid pavement, the position of critical strain is always located at the intermediate depth of the asphalt layer, regardless of temperatures.


2019 ◽  
Vol 38 (2) ◽  
pp. 388-402
Author(s):  
Huaxi Lu ◽  
Zhicheng Gao ◽  
Bitao Wu ◽  
Zhenwei Zhou

Structural health monitoring is an important means of obtaining the state information of bridges, and the extracted quasi-static strain signal can reflect the stress state of bridges directly. However, the strain signals acquired during the operation stage of bridges are dynamic, and the strain gauges used in the health monitoring system are short (no more than 10 cm), which means they are easily affected by small damage at the installation parts of bridges and thereby the monitoring signal abnormalities occur. A type of externally affixed long-gauge fiber strain gauge is used to monitor the health of bridges, and the dynamic and quasi-static signal separation method for long-gauge strain sensors is studied under different vehicle loads; at the same time, the dynamic monitoring performance of the long-gauge sensor is investigated in this paper. The quasi-static strain signal extracted from the dynamic macro-strain signal can be used to directly monitor the stress status of the bridge. The results show that the method proposed in this paper is feasible for extracting the quasi-static macro-strain from a dynamic long-gauge strain signal.


2012 ◽  
Vol 24 (5) ◽  
pp. 568-576 ◽  
Author(s):  
Simon Pouget ◽  
Cédric Sauzéat ◽  
Hervé Di Benedetto ◽  
François Olard

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Hui Wang ◽  
Zepeng Fan ◽  
Jiupeng Zhang

The rutting performance of asphalt pavement structure relies on the high temperature properties of asphalt mixture as well as the pavement structure and thickness. In order to investigate the influence of the structure and thickness, a full-depth wheel tracking test is developed in this research by improving the conventional wheel tracking test apparatus. The newly proposed test method is capable of varying its load speed and load size, controlling its specimen temperature gradient, and simulating the support conditions of actual asphalt pavement. The full-depth wheel tracking test based rutting performance evaluation of different asphalt pavement structures indicates that it is not reasonable to explain the rutting performance of asphalt pavement structure from the point of view of single-layer asphalt mixture rutting performance. The developed full-depth wheel tracking test can be used to distinguish rutting performance of different asphalt pavement structures, and two of five typical asphalt pavement structures commonly used in Shanxi Province were suggested for use in practical engineering.


Sign in / Sign up

Export Citation Format

Share Document