Experimental Study on Mechanical Properties of Timber Columns Strengthened with Carbon-Aramid Hybrid FRP Sheets under Axial Compression

2011 ◽  
Vol 255-260 ◽  
pp. 723-727
Author(s):  
Jian Wu Pan

Based on the experiment of timber circular columns made of pine and fir confined by carbon-aramid hybrid FRP (HFRP) sheets under axial compression, the failure modes, axial bearing capacities, peak compression strains were analyzed. The results showed that: Compared to the unconfined specimens, the axial bearing capacities and peak compression strains of the specimens confined by HFRP sheets were all improved. Axial bearing capacities of pine and fir specimens improved 6.6%~16.8% and 5.0%~16.9%,respectively. Peak compression strains of pine and fir specimens improved 8.9%~60.2% and 11.5%~56.8%, respectively.

2011 ◽  
Vol 94-96 ◽  
pp. 1983-1988
Author(s):  
Jia Song ◽  
Zhen Bao Li ◽  
Yong Ping Xie ◽  
Xiu Li Du ◽  
Yue Gao

An experimental study was made of the mechanical properties of large scale confined concrete subjected to the axial compression test. Eleven tied concrete columns and six plain concrete prisms were tested. In the test, each specimen had the same transverse reinforcement configuration, and similar volumetric ratio of lateral steel, while different size. The test results in this paper indicate that the size of the specimen has no obvious relationship with the ultimate strength, however, it does affect the post-peak ductility to some extent. As a supplement to the experimental study, a finite element method was adopted to imitate the mechanical behavior of the confined concrete under axial compression. The results of the imitation in this paper indicate the confinement mechanism of large scale specimens.


2011 ◽  
Vol 243-249 ◽  
pp. 578-583
Author(s):  
Shao Jie Wang ◽  
Fu Sheng Liu ◽  
Tong Sun ◽  
Shun Ke Zhang ◽  
Hong Bin Wang

On the basis of summary and analysis of the characteristics of concrete hollow blocks and composite masonry walls, this paper puts forward the concept of composite masonry wall with condensed core columns. Regarding the distance between core columns (s=600mm and s=1200mm) as the main influencing factors, two composite masonry walls were designed and built to carry out the axial compression capacity experimental study. The results of the study show that the composite masonry wall with condensed core columns can greatly improve the ultimate axial compression capacity of the wall, delay the fracture process, and influence the failure modes. In the entire experiment, the deformation of concrete hollow blocks and core columns was basically the same, and can work in coordination. The stress mechanism of the composite masonry wall which had splitting fracture changed from the composite masonry wall to the (weak) frame structure, which finally formed column hinge and got destroyed. The experimental results of this paper can provide a new way for the application of concrete hollow blocks as main wall materials in the field of high-rise buildings. The establishment of axial compression capacity formula and the eccentric compression performance of the composite masonry wall with condensed core columns deserve further study.


2012 ◽  
Vol 166-169 ◽  
pp. 3323-3328
Author(s):  
Ling Jun Xie ◽  
Ai Liang Zhai ◽  
Chun He Wang ◽  
Chang Liang Ji ◽  
Shu Jian Chen

By experimental, study on the elastic modulus including the failure modes of Recycled Concrete made of Brick and Tile with the splitting tensile strength and the compressive strength, And the relational formula between the splitting tensile strength and the compressive strength was summarized from the results.


Sign in / Sign up

Export Citation Format

Share Document