High-Resolution Dynamic Analysis of the Phase Transformation in Ge2Sb2Te5 Alloy

2007 ◽  
Vol 26-28 ◽  
pp. 1199-1202
Author(s):  
Se Ahn Song ◽  
Wei Zhang ◽  
Hong Sik Jeong ◽  
Jin Gyu Kim ◽  
Youn Joong Kim

Phase transformation and crystal growth behavior of Ge2Sb2Te5 were investigated systematically by means of in situ heating (from room temperature to 500 oC) of amorphous Ge2Sb2Te5 alloy in a high voltage electron microscope with real-time monitoring. Large-scale crystallization occurred to amorphous Ge2Sb2Te5 around 200 oC. Large crystal growth developed on heating from 200 oC to 400 oC, and single crystalline grains grew up to 150 nm. Eventually the onset of partial melting of thin Ge2Sb2Te5 foil was at 500 oC and liquid Ge2Sb2Te5 was observed for the first time by high-resolution transmission electron microscopy. Hexagonal Ge2Sb2Te5 phase remains after a subsequent cooling.

2005 ◽  
Vol 20 (7) ◽  
pp. 1808-1813 ◽  
Author(s):  
X.-G. Ma ◽  
K. Komvopoulos

Transmission electron microscopy (TEM) and nanoindentation, both with in situ heating capability, and electrical resistivity measurements were used to investigate phase transformation phenomena and thermomechanical behavior of shape-memory titanium-nickel (TiNi) films. The mechanisms responsible for phase transformation in the nearly equiatomic TiNi films were revealed by heating and cooling the samples inside the TEM vacuum chamber. Insight into the deformation behavior of the TiNi films was obtained from the nanoindentation response at different temperatures. A transition from elastic-plastic to pseudoelastic deformation of the martensitic TiNi films was encountered during indentation and heating. In contrast to the traditional belief, the martensitic TiNi films exhibited a pseudoelastic behavior during nanoindentation within a specific temperature range. This unexpected behavior is interpreted in terms of the evolution of martensitic variants and changes in the mobility of the twinned structures in the martensitic TiNi films, observed with the TEM during in situ heating.


1985 ◽  
Vol 62 ◽  
Author(s):  
M. A. Parker ◽  
T. W. Sigmon ◽  
R. Sinclair

ABSTRACTA technique has been developed which employs high resolution transmission electron microscopy (HRTEM) for the observation of the atomic mechanisms associated with solid state phase transformation as they occur at elevated temperatures. It consists of the annealing in-situ of cross-section transmission electron microscopy (TEM) specimens that have been favorably oriented for lattice fringe imaging and the video-recording of dynamic events as they occur in real-time. By means of this technique, we report the first video-recorded lattice images of crystallographic defect motion in silicon, viz. the motion of dislocations and stacking faults, as well as the first such images of the atomic mechanisms responsible for the amorphous to crystalline (a-c) phase transformation, viz. heterogeneous nucleation of crystal nuclei, coalescence of crystal nuclei by co-operative atomic processes, ledge motion at the growth interface, and normal growth in silicon. This technique holds great potential for the elucidation of the atomic mechanisms involved in reaction kinetics in the solid state.


2013 ◽  
Vol 19 (S2) ◽  
pp. 498-499 ◽  
Author(s):  
Y. Lan ◽  
H. Wang ◽  
G. Chen ◽  
Z. Ren

Extended abstract of a paper presented at Microscopy and Microanalysis 2013 in Indianapolis, Indiana, USA, August 4 – August 8, 2013.


1995 ◽  
Vol 398 ◽  
Author(s):  
A. Domenicucci ◽  
G. Gifford ◽  
L.A. Clevenger

ABSTRACTCrystallization, precipitation, and phase transformation phenomena were observed in titanium suicide thin film samples during in situ heating experiments in a transmission electron microscope. The as-deposited TixSiy films were 110 nm in thickness with a composition of 1 Ti to 2.33 Si. Crystallization of the C49 phase was followed isothermally near the sputter deposition temperature. The movement of individual grain boundaries was recorded so that a “velocity of crystallization” could be calculated. The precipitation of excess silicon from the C49 phase was first observed in the 650°C to 750°C temperature range. The precipitates were predominantly of the incoherent type, with a smaller number existing at the grain boundaries. Ostwald ripening then occurred up to the C49 to C54 phase transformation which was accompanied by a dramatic increase in grain size. Grain boundary movement during the phase transformation was such that large precipitates, which were originally at C49-C49 boundaries, ended up within resulting C54 crystals. Many of these larger precipitates were found to exist as epitaxial “islands” at the TiSi2/Si substrate interface.


Author(s):  
J. A. Pollock ◽  
M. Martone ◽  
T. Deerinck ◽  
M. H. Ellisman

Localization of specific proteins in cells by both light and electron microscopy has been facilitate by the availability of antibodies that recognize unique features of these proteins. High resolution localization studies conducted over the last 25 years have allowed biologists to study the synthesis, translocation and ultimate functional sites for many important classes of proteins. Recently, recombinant DNA techniques in molecular biology have allowed the production of specific probes for localization of nucleic acids by “in situ” hybridization. The availability of these probes potentially opens a new set of questions to experimental investigation regarding the subcellular distribution of specific DNA's and RNA's. Nucleic acids have a much lower “copy number” per cell than a typical protein, ranging from one copy to perhaps several thousand. Therefore, sensitive, high resolution techniques are required. There are several reasons why Intermediate Voltage Electron Microscopy (IVEM) and High Voltage Electron Microscopy (HVEM) are most useful for localization of nucleic acids in situ.


2019 ◽  
Vol 1 (4) ◽  
pp. 1581-1588 ◽  
Author(s):  
S. I. Sadovnikov ◽  
E. Yu. Gerasimov

For the first time, the α-Ag2S (acanthite)–β-Ag2S (argentite) phase transition in a single silver sulfide nanoparticles has been observed in situ using a high-resolution transmission electron microscopy method in real time.


Sign in / Sign up

Export Citation Format

Share Document