Modification of L Zeolite and Hydroisomerization of N-Dodecane over Pt/L Catalysts and Pt/SAPO-11 Catalyst

2011 ◽  
Vol 266 ◽  
pp. 151-156 ◽  
Author(s):  
Li Han ◽  
Jing Jing Xu ◽  
Qin Wang ◽  
Dong Yan Wei ◽  
Jian Feng Wang ◽  
...  

We have presented the synthesis and modification of L zeolite, and have further investigated the hydroisomerization of n-dodecane over the Pt/HL catalyst in a fixed bed reactor by changing reaction parameters such as temperature and pressure, respectively. The results showed that the combined use of ion-exchange, critric acid treatment and hydrothermal treatment could improve the Si/Al ratio of L zeolite dramatically while the high crystallinity was held. The Pt/HL catalyst showed higher stability, good regeneration property, catalytic activity and selectivity to the branched isomers under relatively low reaction pressures compared to the Pt/SAPO-11 catalyst.

2021 ◽  
Vol 92 (4) ◽  
pp. 043711
Author(s):  
Harm Ridder ◽  
Christoph Sinn ◽  
Georg R. Pesch ◽  
Jan Ilsemann ◽  
Wolfgang Dreher ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3347
Author(s):  
Arslan Mazhar ◽  
Asif Hussain Khoja ◽  
Abul Kalam Azad ◽  
Faisal Mushtaq ◽  
Salman Raza Naqvi ◽  
...  

Co/TiO2–MgAl2O4 was investigated in a fixed bed reactor for the dry reforming of methane (DRM) process. Co/TiO2–MgAl2O4 was prepared by modified co-precipitation, followed by the hydrothermal method. The active metal Co was loaded via the wetness impregnation method. The prepared catalyst was characterized by XRD, SEM, TGA, and FTIR. The performance of Co/TiO2–MgAl2O4 for the DRM process was investigated in a reactor with a temperature of 750 °C, a feed ratio (CO2/CH4) of 1, a catalyst loading of 0.5 g, and a feed flow rate of 20 mL min−1. The effect of support interaction with metal and the composite were studied for catalytic activity, the composite showing significantly improved results. Moreover, among the tested Co loadings, 5 wt% Co over the TiO2–MgAl2O4 composite shows the best catalytic performance. The 5%Co/TiO2–MgAl2O4 improved the CH4 and CO2 conversion by up to 70% and 80%, respectively, while the selectivity of H2 and CO improved to 43% and 46.5%, respectively. The achieved H2/CO ratio of 0.9 was due to the excess amount of CO produced because of the higher conversion rate of CO2 and the surface carbon reaction with oxygen species. Furthermore, in a time on stream (TOS) test, the catalyst exhibited 75 h of stability with significant catalytic activity. Catalyst potential lies in catalyst stability and performance results, thus encouraging the further investigation and use of the catalyst for the long-run DRM process.


2013 ◽  
Vol 781-784 ◽  
pp. 308-311 ◽  
Author(s):  
Xin Li ◽  
Wei Su ◽  
Qi Bin Xia ◽  
Zhi Meng Liu

Manganese and cerium based catalysts with different Mn/Ce molar ratios prepared by impregnation method for ethyl acetate oxidation. The activity tests of the samples were performed in a fixed-bed reactor. The effect of gas hourly space velocity (GHSV) and ethyl acetate concentration on the catalytic activity of the catalyst were also investigated. The results showed that these catalysts had high activity for the catalytic oxidation of ethyl acetate, of which the catalyst Mn0.9Ce0.1Ox/TiO2exhibitedthe bestactivity, and the temperature required for 90% conversion of ethyl acetate was at 216 °C. The catalyst Mn0.9Ce0.1Ox/TiO2still maintained high activity in the range of GHSV (16,500 to 48,500 h-1) and ethyl acetate concentration (4526 to 7092 mg/m3). In additional, experiments for measuring stability of Mn0.9Ce0.1Ox/TiO2were carried out, and experimental results showed that the good stability of Mn0.9Ce0.1Ox/TiO2was kept after it has run for 25 hours.


2015 ◽  
Vol 802 ◽  
pp. 431-436
Author(s):  
Siti Aminah Md Ali ◽  
Ku Halim Ku Hamid ◽  
Kamariah Noor Ismail

Five series of silica supported bimetallic oxide (NiCo/SiO2) catalysts have been synthesized through successive reverse co-precipitation and wet impregnation methods at different metal loadings (i.e. 80Ni20Co/SiO2,, 60Ni40Co/SiO2,50Ni50Co/SiO2,40Ni60Co/SiO2,20Ni80Co/SiO2). The catalytic performance of these catalysts were tested for the CO2methanation catalysis using microactivity fixed bed reactor. Nickel rich catalyst (80Ni20Co/SiO2) exhibited the highest catalytic activity in the CO2methanation with 47.1% of CO2conversion. Meanwhile, the CH4selectivity and yield was found to be at 99.9% and 27%, respectively.


2014 ◽  
Vol 1008-1009 ◽  
pp. 252-256
Author(s):  
Wipawan Sangsanga ◽  
Jin Xiao Dou ◽  
Zhe Lei Tong ◽  
Jiang Long Yu

The catalytic effects of Zn on the yield of the gaseous products during steam gasification of lignite char were investigated by using a fixed-bed reactor. The gas composition was measured using a gas chromatography (GC). The experimental results show that Zn has catalytic effects on steam gasification and increased the yield of H2. There was an optimum content of Zn implanted into the coal above which zinc does not show further catalytic activity.


2019 ◽  
Vol 70 (6) ◽  
pp. 2004-2009
Author(s):  
Iuliean Vasile Asaftei ◽  
Neculai Catalin Lungu ◽  
Maria Ignat ◽  
Ion Sandu

The Zn and Ni were introduced into HZSM-5 zeolite by ion exchange method with aqueous solutions of Zn(NO3)2 and Ni(NO3)2, to investigate the catalytic activity and selectivity of modified Zn-HZSM-5 and Ni-HZSM-5 catalysts for conversion of butane-butylenes technical mixtures in a fixed-bed stainless-steel reactor (Twin Reactor System Naky) at 450�C, at atmospheric pressure for Zn-HZSM-5 and at 4 atm. total pressure for Ni-HZSM-5 and at a space velocity (WHSV) of 1h-1. The catalysts were characterized using XRD, SEM, and NH3-TPD analysis for their structure, morphology and acidity. The catalytic activity of the same catalyst were examined during over 10 catalytic tests (with regeneration of catalyst after each test) using mixtures of butanes-butylenes.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2017
Author(s):  
Yuliya Gulyaeva ◽  
Maria Alekseeva (Bykova) ◽  
Olga Bulavchenko ◽  
Anna Kremneva ◽  
Andrey Saraev ◽  
...  

The heightened interest in liquid organic hydrogen carriers encourages the development of catalysts suitable for multicycle use. To ensure high catalytic activity and selectivity, the structure–reactivity relationship must be extensively investigated. In this study, high-loaded Ni–Cu catalysts were considered for the dehydrogenation of methylcyclohexane. The highest conversion of 85% and toluene selectivity of 70% were achieved at 325 °C in a fixed-bed reactor using a catalyst with a Cu/Ni atomic ratio of 0.23. To shed light on the relationship between the structural features and catalytic performance, the catalysts were thoroughly studied using a wide range of advanced physicochemical tools. The activity and selectivity of the proposed catalysts are related to the uniformity of Cu distribution and its interaction with Ni via the formation of metallic solid solutions. The method of introduction of copper in the catalyst plays a crucial role in the effectiveness of the interaction between the two metals.


2010 ◽  
Vol 132 ◽  
pp. 228-235 ◽  
Author(s):  
Xu Li ◽  
Guan Zhong Lu ◽  
Yang Long Guo ◽  
Yun Guo ◽  
Yan Qin Wang

A novel solid superbase catalyst of La2O3-ZnO/ZrO2 was prepared, and its H– value (Hammett function) of surface basic strength reaches 26.5. The catalytic activity of La2O3-ZnO/ZrO2 was evaluated for the transesterification of soybean oil (SBO) with methanol to biodiesel in a fixed bed reactor under atmospheric pressure. The results show that the chemical composition of the La2O3-ZnO/ZrO2 catalyst influences both its H– value and catalytic performance, the appropriate content of ZrO2 is 60 wt.% and the La2O3/ZnO molar ratio is 4~5/1. La2O3-ZnO/ZrO2 is an effective catalyst for the transesterification of SBO, and the SBO conversion reaches 71.3% at 70°C for 12h.


2012 ◽  
Vol 518-523 ◽  
pp. 77-80
Author(s):  
Hong Wang ◽  
Cui Qing Li ◽  
Fu Chen Ding ◽  
Yong Ji Song ◽  
Xue Bing Lu

The Ni(x)Co(10)/MOR (x = 0.01, 0.15, 0.30) catalysts were prepared by the impregnating method. The catalysts were characterized by XRD, NH3-TPD and NO-TPD. The catalytic activity was evaluated with fixed-bed reactor. The results shown that cobalt species was present in the surface of MOR zeolite in the form of Co3O4, and the catalytic activity, acidity and adsorption of NO were affected by Ni/Co molar ratio. The Ni(0.01)Co(10)/MOR catalyst had better activity, the conversion of NO was 56.9% at 340 °C.


Sign in / Sign up

Export Citation Format

Share Document