The Study of Invasion Examination Algorithm Based on Improvement Fuzzy C Means

2011 ◽  
Vol 267 ◽  
pp. 720-725
Author(s):  
Ke Chen ◽  
Wen De Ke

This paper put forward intrusion detection algorithm based on improved fuzzy C means (FCM) algorithm and execute the anomaly detection on KDDCUP data set, build intrusion detection system based improved algorithm and analyze the feasibility of the system. Through the fuzzy C means value's improvement algorithm, solve the fuzzy C means value algorithm problem that the algorithm sensitive to selection of the initial values and easily to fall in the local best solution. Thereby under the condition guarantee integrality and consistency of data attribute values, get rid of blindness of selecting initial value and reduce clustering time and algorithm complexity, enhance speed of the algorithm.

2019 ◽  
Vol 8 (4) ◽  
pp. 4908-4917

System security is of essential part now days for huge organizations. The Intrusion Detection System (IDS) are getting to be irreplaceable for successful assurance against intrusions that are continually changing in size and intricacy. With information honesty, privacy and accessibility, they must be solid, simple to oversee and with low upkeep cost. Different adjustments are being connected to IDS consistently to recognize new intrusions and handle them. This paper proposes model based on combination of ensemble classification for network traffic anomaly detection. Intrusion detection system is try to perform in real time, but they cannot improved due to the network connections. This research paper is trying to implement intrusion detection system (IDS) using ensemble method for misuse as well anomaly detection for HIDS and NIDS based also. This system used various individual classification methods and its ensemble model on KDD99 and NSL-KDD data set to check the performance of model. It also check the performance on creating real time network traffic using own attack creator and send this to the remote machine which has our proposed IDS system. This system used training rule set as a background knowledge which are generated by genetic algorithm. Ensemble approach contains three algorithms as Naive Bayes, Artificial Neural Network and J48. Ensemble classifiers apply on network packets mapping with GA rule set and generate the result. Finally our proposed model produces highest detection rate and lower false negative ratio compare to others. Also find the accuracy of each attack types.


2021 ◽  
Vol 2091 (1) ◽  
pp. 012001
Author(s):  
C Callegari ◽  
S Giordano ◽  
M Pagano

Abstract Thanks to its ability to face unknown attacks, Anomaly-based Intrusion Detection is a key research topic in network security and different statistical methods, fed by suitable traffic features, have been proposed in the literature. The choice of a proper dataset is a critical element not only for performance comparison, but also for the correct identification of the normal traffic behaviour. In this paper we address the general problem of selecting traffic features from recent real traffic traces (MAWI data set) and verify how the real-time constraint impacts on the general performance. Although a state-of-the-art IDS (Intrusion Detection System) based on deep neural networks is considered, our conclusions can be extended to any anomaly detection algorithm and advocate for a fair comparison of IDSs using representative datasets and traffic features that can be extracted on-line (and do not depend on the entire dataset).


Any unusual move can be considered a break in quirks. Some procedures and calculations were mentioned in the drafting to identify irregularities. In most cases, true positive and false positive limits were used to observe their display. However, depending on the application, an off-base false positive or false positive can have serious adverse repercussions. This requires the incorporation of cost-sensitive limits on display. Furthermore, the more popular KDD-CUP-99 test data set has a huge information size that requires some pre-management measure. Our work in this article begins by listing the need for a delicate cost examination with some original models. After talking about the KDDCUP-99, a methodology for the end of the reflections is proposed and later the possibility of reducing the amount of the most significant reflections in a simple way and the size of the KDD-CUP-99 in a indirect way. From the revealed writing, the general techniques are chosen to detect the irregularities that best behave for the various types of aggressions. These various filing cabinets are stacked to frame a team. An expensive method is proposed to dispense the relative loads to the classifiers equipped for the realization of the finished product. The profitability of the false and genuine positive results is performed and a technique is proposed to choose the components of the profitability measures to further improve the results and achieve the best overall exposure. There is talk of the effect on the exchange of execution due to the merger of the viability of the expense.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
R. Sekhar ◽  
K. Sasirekha ◽  
P. S. Raja ◽  
K. Thangavel

Abstract Intrusion Detection Systems (IDSs) have received more attention to safeguarding the vital information in a network system of an organization. Generally, the hackers are easily entering into a secured network through loopholes and smart attacks. In such situation, predicting attacks from normal packets is tedious, much challenging, time consuming and highly technical. As a result, different algorithms with varying learning and training capacity have been explored in the literature. However, the existing Intrusion Detection methods could not meet the desired performance requirements. Hence, this work proposes a new Intrusion Detection technique using Deep Autoencoder with Fruitfly Optimization. Initially, missing values in the dataset have been imputed with the Fuzzy C-Means Rough Parameter (FCMRP) algorithm which handles the imprecision in datasets with the exploit of fuzzy and rough sets while preserving crucial information. Then, robust features are extracted from Autoencoder with multiple hidden layers. Finally, the obtained features are fed to Back Propagation Neural Network (BPN) to classify the attacks. Furthermore, the neurons in the hidden layers of Deep Autoencoder are optimized with population based Fruitfly Optimization algorithm. Experiments have been conducted on NSL_KDD and UNSW-NB15 dataset. The computational results of the proposed intrusion detection system using deep autoencoder with BPN are compared with Naive Bayes, Support Vector Machine (SVM), Radial Basis Function Network (RBFN), BPN, and Autoencoder with Softmax. Article Highlights A hybridized model using Deep Autoencoder with Fruitfly Optimization is introduced to classify the attacks. Missing values have been imputed with the Fuzzy C-Means Rough Parameter method. The discriminate features are extracted using Deep Autoencoder with more hidden layers.


2014 ◽  
Vol 530-531 ◽  
pp. 705-708
Author(s):  
Yao Meng

This paper first engine starting defense from Intrusion Detection, Intrusion detection engine analyzes the hardware platform, the overall structure of the technology and the design of the overall structure of the plug, which on the whole structure from intrusion defense systems were designed; then described in detail improved DDOS attack detection algorithm design thesis, and the design of anomaly detection algorithms.


2013 ◽  
Vol 655-657 ◽  
pp. 1787-1790
Author(s):  
Sheng Chen Yu ◽  
Li Min Sun ◽  
Yang Xue ◽  
Hui Guo ◽  
Xiao Ju Wang ◽  
...  

Intrusion detection algorithm based on support vector machine with pre-extracting support vector is proposed which combines the center distance ratio and classification algorithm. Given proper thresholds, we can use the support vector as a substitute for the training examples. Then the scale of dataset is decreased and the performance of support vector machine is improved in the detection rate and the training time. The experiment result has shown that the intrusion detection system(IDS) based on support vector machine with pre-extracting support needs less training time under the same detection performance condition.


2020 ◽  
Author(s):  
Sriram Srinivasan ◽  
Shashank A ◽  
vinayakumar R ◽  
Soman KP

In the present era, cyberspace is growing tremendously and the intrusion detection system (IDS) plays a key role in it to ensure information security. The IDS, which works in network and host level, should be capable of identifying various malicious attacks. The job of network-based IDS is to differentiate between normal and malicious traffic data and raise an alert in case of an attack. Apart from the traditional signature and anomaly-based approaches, many researchers have employed various deep learning (DL) techniques for detecting intrusion as DL models are capable of extracting salient features automatically from the input data. The application of deep convolutional neural network (DCNN), which is utilized quite often for solving research problems in image processing and vision fields, is not explored much for IDS. In this paper, a DCNN architecture for IDS which is trained on KDDCUP 99 data set is proposed. This work also shows that the DCNN-IDS model performs superior when compared with other existing works.


Author(s):  
Soukaena Hassan Hashem

This chapter aims to build a proposed Wire/Wireless Network Intrusion Detection System (WWNIDS) to detect intrusions and consider many of modern attacks which are not taken in account previously. The proposal WWNIDS treat intrusion detection with just intrinsic features but not all of them. The dataset of WWNIDS will consist of two parts; first part will be wire network dataset which has been constructed from KDD'99 that has 41 features with some modifications to produce the proposed dataset that called modern KDD and to be reliable in detecting intrusion by suggesting three additional features. The second part will be building wireless network dataset by collecting thousands of sessions (normal and intrusion); this proposed dataset is called Constructed Wireless Data Set (CWDS). The preprocessing process will be done on the two datasets (KDD & CWDS) to eliminate some problems that affect the detection of intrusion such as noise, missing values and duplication.


Sign in / Sign up

Export Citation Format

Share Document