Research on the Teaching System Development of Maintenance Training for General-Purpose Electronic Equipment

2011 ◽  
Vol 271-273 ◽  
pp. 1629-1632
Author(s):  
Ming Fei Xia ◽  
Yu Ming Bo ◽  
Shi You Fan

Development maintenance training for electronic equipment is the important way to solve the difficult of electronic equipment maintenance and problem of iridescent method of maintenance training. The technical characteristics of the maintenance system for electronic equipment are analyzed in this paper. A maintenance training teaching system for electronic equipment with unity hardware and common software platform is researched. The hardware structure and the development method of its software are discussed in this paper. The teaching system possesses characters such as real physics signal,multi method of human-computer interaction ,well results of learning best,easy to development,etc. The teaching system is mainly composed of the following: motherboard, equipment operation panel, equipment component, lights and buttons etc. Its software is based on a common database. When we need development a teaching system for new equipment, we just add some data to the database using the development platform and need not modify its software. Practice shows that the teaching system uses a common hardware design and software platform, greatly reducing the development workload of a new teaching system using the architecture.

SIMULATION ◽  
2021 ◽  
pp. 003754972199601
Author(s):  
Jinchao Chen ◽  
Keke Chen ◽  
Chenglie Du ◽  
Yifan Liu

The ARINC 653 operation system is currently widely adopted in the avionics industry, and has become the mainstream architecture in avionics applications because of its strong agility and reliability. Although ARINC 653 can efficiently reduce the weight and energy consumption, it results in a serious development and verification problem for avionics systems. As ARINC 653 is non-open source software and lacks effective support for software testing and debugging, it is of great significance to build a real-time simulation platform for ARINC 653 on general-purpose operating systems, improving the efficiency and effectiveness of system development and implementation. In this paper, a virtual ARINC 653 platform is designed and realized by using real-time simulation technology. The proposed platform is composed of partition management, communication management, and health monitoring management, provides the same operation interfaces as the ARINC 653 system, and allows dynamic debugging of avionics applications without requiring the actual presence of real devices. Experimental results show that the platform not only simulates the functionalities of ARINC 653, but also meets the real-time requirements of avionics applications.


1978 ◽  
Vol 8 (2) ◽  
pp. 159-173 ◽  
Author(s):  
Barry W. Brown ◽  
Judy McConathy ◽  
Margaret Meigs ◽  
Barbara Munger ◽  
Marcus Schimek

2021 ◽  
Author(s):  
Jonathan B. Chan

System on Programmable Chip (SoPC) based embedded system development has been increasing, aiming for improved system design, testing, and cost savings in the workflow for Application Specific ICs (ASIC). We examine the development of Smart Home embedded systems, which have been traditionally based on a fixed processor and memory, with inflexible configuration. We investigate how more ability can be added by updating firmware without the burden of updating hardware, or using a full (but dedicated) general purpose computer system. Our development and implementation of the smart home controller is based on the SoPC development environment from Altera. The development board includes all the necessary parts such as processor, memory, and various communication interfaces. The initial implementation includes a simple protocol for communication between home appliances or devices and controller. This protocol allows data transfer between home appliances or devices and the controller, in turn allowing both to support more features. We have investigated and developed a home resource management application. The main resources being managed in this project are hot and cold water, electricity, and gas. We have introduced a number of expert rules to manage these resources. Additionally, we have developed a home simulator, with virtual appliances and devices, that communicates with the home controller. The simulator interacts with the SoPC based smart home embedded system developed in this project by generating messages representing a number of smart appliances in the home. It provides a useful testing environment for the smart home embedded system to verify its design goals.


Author(s):  
S. Nagasawa ◽  
H. Sakuta ◽  
M. Goto

Abstract This paper deals with conceptual orientation and system development of intelligent support system for general purpose FEA (finite element analysis) programs. An integrated support system called “InhierTalk” (Integrated interactive environment for hierarchical representation for FEA) has been developed in Smalltalk, an object oriented language, in order to confirm effectivity of hierarchical representation and to establish an optimum method of the system development. Two object-oriented knowledge models which consist of macro visual data representation and micro regularized data representation are proposed. In the development, it is found to be clear that active and passive evaluation methods are effective for construction of support system.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Ibrahim S. Alsukayti

The technological breakthrough of the Internet of Things (IoT) drives the emergence of a wide scope of smart IoT solutions in different domains. Advancing the different technological aspects of these solutions requires effective IoT implementations and experimentations. This is widely addressed following low-cost and scalable methods such as analytical modeling and simulation. However, such methods are limited in capturing physical characteristics and network conditions in a realistic manner. Therefore, this paper presents an innovative IoT testbed system which facilitates practical experimentation of different IoT solutions in an effective environment. The testbed design was developed towards a general-purpose multidimensional support of different IoT properties including sensing, communication, gateway, energy management, data processing, and security. The implementation of the testbed was realized based on integrating a set of robust hardware components and developing a number of software modules. To illustrate its effectiveness, the testbed was utilized to experiment with energy efficiency of selected IoT communication technologies. This resulted in lower energy consumption using the Bluetooth Low Energy (BLE) technology compared to the Zigbee and 6LoWPAN technologies. A further evaluation study of the system was carried out following the Technology Acceptance Model (TAM). As the study results indicated, the system provides a simple yet efficient platform for conducting practical IoT experiments. It also had positive impact on users’ behavior and attitude toward IoT experimentation.


Sign in / Sign up

Export Citation Format

Share Document