Study of Nanocrystalline ZnO and Zn2TiO4 Film Electrode with ZnPc Dye and PbS Quantum Dots Composite Sensitization

2011 ◽  
Vol 287-290 ◽  
pp. 2217-2220 ◽  
Author(s):  
Qing Wang ◽  
Xiao Nan Zhang ◽  
Xiao Di Huo ◽  
Ren Hui Zhang ◽  
Jian Feng Dai

Nanocrystalline ZnO and Zn2TiO4 porous film electrodes were prepared by sol-gel method and spin coating method, and the nanocrystalline porous films were characterized by XRD and SEM. Using ZnPc dye and PbS quantum dots as sensitizers. The nanocrystalline film electrodes of ZnO series and Zn2TiO4 series were prepared separately, and their absorption characteristics observed by UV-vis spectrophotometer. The results showed that ZnPc dye and PbS quantum dots could well sensitize the film electrodes, and the effect of ZnPc dye and PbS quantum dots composite sensitization was optimal. Then, the solar cells were fabricated. In simulation sunlight, the overall photoelectric conversion efficiency by Zn2TiO4/Q-PbS/ZnPc electrode increased by 22%, relative to the ZnO/Q-PbS/ZnPc electrode’s.

2019 ◽  
pp. 5-10 ◽  

Síntesis y caracterización de un compuesto semiconductor NiO-ZnO dopado con nanopartículas de Au por el método sol-gel para aplicación como sensores de gas Alex Díaz, Dionicio Otiniano, E. Della Gaspera, Alessandro Martucci Departamento de Ingeniería de Materiales, Universidad Nacional de Trujillo-Perú Dipartimento d’Ingegneria Meccanica – Settore Materiali, Universita di Padova, 35131 Padova-Italia DOI: https://doi.org/10.33017/RevECIPeru2012.0002/ RESUMEN Láminas porosas de un compuesto semiconductor formado por NiO-ZnO (%mol) dopado con nanopartículas de Au (3% mol) fueron preparados por el método sol-gel usando acetato de níquel tetrahidratado (NiC4H6O4.4H2O) y acetato de zinc dihidratado (C4H6O4Zn.2H2O) como precursores, metanol (CH6OH) y etanol (C2H6O) como solventes, monoetanolamina (C2H7NO) y dietanolamina (C4H11NO2) como ligantes funcionales, y ácido cloroaúrico HAuCl4 como precursor. Las muestras se caracterizaron por espectroscopias Infrarrojo (IR), ultravioleta (UV-VIS), microscopía SEM, difracción de rayos X (XRD), y ensayos de sensores gaseosos. Las muestras semiconductoras fueron depositadas sobre substratos de silicio por el método de spin-coating a 2000 rpm, posteriormente fueron tratadas a 500 y 600 ºC. Los efectos de las composiciones de NiO-ZnO y el porcentaje de dopaje también se discuten en este argumento. El espesor de la capa fue determinado por elipsometria aproximado a 75 nm. Estos compuestos fueron ensayados para sensores gaseosos de H2 y CO (1% V/V) a 300ºC, demostrando óptimos resultados para el H2, pero no así para el CO. Descriptores: NiO, ZnO, semiconductores, sensor gaseoso. ABSTRACT Porous films formed by a semiconductor ZnO-NiO (% mol) doped with Au nanoparticles (3% mol) were prepared by sol-gel method using nickel acetate tetrahydrate (NiC4H6O4.4H2O) and zinc acetate dihydrate (C4H6O4Zn.2H2O) as precursors, methanol (CH6OH) and ethanol (C2H6O) as solvents, monoethanolamine (C2H7NO) and diethanolamine (C4H11NO2) as functional chelants, and chloroauric acid (HAuCl4) as gold precursor. The samples were characterized by infrared (IR) and ultraviolet (UV-VIS) spectroscopy, microscopy SEM, X-ray diffraction (XRD) and gas sensing tests. The semiconductor samples were deposited on silicon substrates by spin-coating method at 2000 rpm, subsequently annealing at 500 and 600 °C. The effects of the compositions of NiO-ZnO and the percentage of doping are also discussed. The layer thickness was determined by ellipsometry in approximately 75 nm. These compounds were tested for gas sensors for H2 and CO (1% V/V) at 300 °C, showing excellent results for H2, but not for the CO. Keywords: NiO, ZnO, semiconductors, gas sensor.


2017 ◽  
Vol 623 ◽  
pp. 14-18 ◽  
Author(s):  
Fenglin Tang ◽  
Chao Mei ◽  
Peiyu Chuang ◽  
Tingting Song ◽  
Hailin Su ◽  
...  

Author(s):  
Ibrahim Mohd Yazid ◽  
Muhammad Hazim Raselan ◽  
Shafinaz Sobihana Shariffudin ◽  
Puteri Sarah Mohamad Saad ◽  
Sukreen Hana ◽  
...  

2020 ◽  
Author(s):  
A. Amali Roselin ◽  
N. Anandhan ◽  
I. Joseph Paneer Doss ◽  
G. Gopu ◽  
K. P. Ganesan ◽  
...  

2012 ◽  
Vol 64 (1) ◽  
pp. 219-223 ◽  
Author(s):  
M. Cavas ◽  
R. K. Gupta ◽  
A. A. Al-Ghamdi ◽  
Omar A. Al-Hartomy ◽  
Farid El-Tantawy ◽  
...  

2021 ◽  
Vol 16 (6) ◽  
pp. 967-973
Author(s):  
Shuai Zhao ◽  
Dong-Xue Lin ◽  
Yu-Xin Wang

All of the TiO2 films including intrinsic TiO2 film, Zn single doped film with 2.0 at% content and N doped films with 4.0 at%, 6.0 at%, 8.0 at% and 10.0 at% content, were obtained by butyl titanate (Ti(OC4H9)4) as a titanium source, zinc nitrate (Zn(NO3)2·6H2O) as zinc source and urea (H2 NCONH2) as nitrogen source, which was calcined at 600 °C on the glass substrate and Si substrate using sol–gel spin coating method. The structures, morphology and optical properties of various films were analyzed and studied by X ray diffract meter (XRD), ultraviolet-visible spectrophotometer (UV-Vis) and scanning electron microscope (SEM). The results indicated that the main crystal plane of TiO2 film was (101) and any impurity crystal plane didn't appear. All samples had obvious red shifts in the absorbing edge overall and reduced significantly the width of forbidden band, especially, the N doping content with 8.0 at% was surprised to investigate the strongest (101) peak intensity, the sharpest peak type, the best meritocratic orientation, the greatest red shift of the absorption spectrum, the lowest optical band gap value of 3.356 eV, and the highest utilization rate of visible light of the sample. However, the surface morphology of the others films except the N doping content with 8.0 at% is not further improved by co-doping, that is, their surfaces were still rough, had obvious voids and uneven distribution between the grains. Meanwhile, the intensity of the (101) crystalline diffraction peaks of these samples were reduced and the crystalline spacing generally increased after co-doping.


2015 ◽  
Vol 6 ◽  
pp. 2105-2112 ◽  
Author(s):  
Roberto Nisticò ◽  
Paola Avetta ◽  
Paola Calza ◽  
Debora Fabbri ◽  
Giuliana Magnacca ◽  
...  

Highly selective porous films were prepared by spin-coating deposition of colloidal silica nanoparticles on an appropriate macroporous substrate. Silica nanoparticles very homogenous in size were obtained by sol–gel reaction of a metal oxide silica precursor, tetraethyl orthosilicate (TEOS), and using polystyrene-block-poly(ethylene oxide) (PS-b-PEO) copolymers as soft-templating agents. Nanoparticles synthesis was carried out in a mixed solvent system. After spin-coating onto a macroporous silicon nitride support, silica nanoparticles were calcined under controlled conditions. An organized nanoporous layer was obtained characterized by a depth filter-like structure with internal porosity due to interparticle voids. Permeability and size-selectivity were studied by monitoring the diffusion of probe molecules under standard conditions and under the application of an external stimulus (i.e., electric field). Promising results were obtained, suggesting possible applications of these nanoporous films as selective gates for controlled transport of chemical species in solution.


Sign in / Sign up

Export Citation Format

Share Document