Weld Width Control System for Pulsed MIG Welding of Aluminum Alloy

2011 ◽  
Vol 299-300 ◽  
pp. 908-911
Author(s):  
Li Hui Lu ◽  
Ding Fan ◽  
Jian Kang Huang ◽  
Ming Zhu ◽  
Yu Shi

Due to strong heat accumulation and low surface tension of aluminum alloy, weld width will become wider, even subsidence in pulsed MIG welding process of aluminum alloy at constant parameters. A variable double-pulse method for weld width control is proposed. Weld width control is realized by changing double-pulse duty cycle that is the ratio of high-energy pulse time in a double-pulse cycle to adjust heat input based on the vision sensing for weld width. A rapid prototyping control system is built on the basis of vision sensing and xPC Target real-time environment. Then variable double-pulse MIG welding process test is done and proves the feasibility of the control scheme. On this basis, weld width control test in pulsed MIG welding of aluminum alloy is carried out and obtains a good weld with beautiful formation and uniform weld width. The results show that weld width control can be realized well with the variable double-pulse method in pulsed MIG welding of aluminum alloy.

Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1388
Author(s):  
Ke Yang ◽  
Fei Wang ◽  
Hongbing Liu ◽  
Peng Wang ◽  
Chuanguang Luo ◽  
...  

High-efficiency and high-quality welding has always been the focus of welding research. This article proposes a novel double-pulse, triple-wire MIG welding process for the welding of 6082-T6 aluminum alloy. The process characteristics of welding arc and droplet transfer were studied, and the performances of weld formation, morphology, hardness, and tensile strength were tested for the 1 Hz, 3 Hz, and 5 Hz double-pulse welding and normal-pulse welding. It was found that in the welding process, the pulsed arc steadily alternated among three welding wires without arc interruption, and the arc length changed periodically with the double-pulse frequency. The droplets transferred with a stable one-pulse-one-drop mode. Besides, a proper double-pulse frequency, e.g., 3 Hz in this case, was conducive to forming good welds with regular fish-scale patterns and no pores. The tensile strength of the joint could reach 64% of the base material’s tensile strength, and its fracture belonged to plastic fracture, which occurred in the HAZ. This new welding method will have great potential in aluminum alloy welding.


2011 ◽  
Vol 295-297 ◽  
pp. 1933-1937 ◽  
Author(s):  
Zhao Dong Zhang ◽  
Xiang Yu Kong

In this paper, the features of weld formation, porosity, arc behavior, microstructure and mechanical properties of 6061 Al alloy thin sheet welds by direct current (DC) double pulse metal inert gas (MIG) welding process are investigated and compared with the traditional DC MIG welding process. Results show that continuous one-side welding with back forming weld beads without spatters, undercuts or cracks can be obtained by using the DC double pulse MIG welding process. The porosity of weld bead can be largely reduced by using the process. The arc of DC double pulse MIG welding is stable without arc blowout, and the metal transfer model of DC double pulse MIG welding is better than that of DC MIG welding. Microstructure of the weld bead by DC double pulse MIG welding shows a dendrite structure and it is fine and uniform. The average ultimate tensile strength and elongation of the weld bead by DC double pulse MIG welding can get to 228MPa, 80% of base metal, and 7.6%, 63% of base metal.


2008 ◽  
Vol 575-578 ◽  
pp. 1382-1388 ◽  
Author(s):  
Hong Ming Gao ◽  
Yan Bai ◽  
Lin Wu

10mm-5A06 aluminum alloy was butt-welded in a single pass by the plasma-gas metal arc (plasma-MIG) welding procedure, the joints were subjected to X-ray inspection, the microstructure and mechanical performance of weld were also studied. The results indicate that plasma-MIG welding is superior to regular conventional MIG welding on the aspects of reducing weld porosity, increasing joint quality and improving deposition efficiency. Good weld joint with less porosity and excellent mechanical properties is obtained, which can reach as 92.62% tensile strength and 85.12% elongation percentage as base metal. Dimples in which the precipitated phase is the solid solution based on Al3Mg2 are observed in fracture scanning electron micrograph and the fracture mode is ductile rupture. α-Al and Al3Mg2 ,α-Al and eutectic structure are observed respectively in fusion area and in weld zone. The wire feed rate and melting rate can come to 14.5m/min and 80g/min respectively for the 1.6mm welding wire by the plasma-MIG welding process on the premise that the tensile strength of the joints meet the requirements.


2019 ◽  
Vol 9 (1) ◽  
pp. 127 ◽  
Author(s):  
Jiaxiang Xue ◽  
Min Xu ◽  
Wenjin Huang ◽  
Zhanhui Zhang ◽  
Wei Wu ◽  
...  

Aluminum alloy welding frequently experiences difficulties such as heat input control, poor weld formation, and susceptibility to pore generation. We compared the use of two different modulations for double-pulse metal inert gas (MIG) welding to reduce the heat input required to generate oscillations in the weld pool. The stabilities of rectangular wave-modulated and trapezoidal wave-modulated double-pulse MIG welding (DP-MIG and TP-MIG) were analyzed by examining their welding processes and weld profiles. We found that the transitional pulse in TP-MIG welding results in smoother current transitions, softer welding arc sounds, and a highly uniform fish-scale pattern. Therefore, TP-MIG welding is more stable than DP-MIG welding. The effects of these double-pulse modulation schemes on welding input energy are presented. We propose methods for reducing welding input energy by varying the number of pulses or the pulse base time of low-energy pulse train while keeping the welding current and welding arc stable and unchanged. Compared to DP-MIG welding, TP-MIG welding reduces the input energy by 12% and produces finer grain sizes, which increases weld hardness. Therefore, TP-MIG welding offers a new approach for heat input control in DP-MIG welding of aluminum alloys. The results of this work are significant for aluminum alloy welding.


Sign in / Sign up

Export Citation Format

Share Document