Comparison between Plasma-MIG and MIG Procedures on 5A06 Aluminum Alloy

2008 ◽  
Vol 575-578 ◽  
pp. 1382-1388 ◽  
Author(s):  
Hong Ming Gao ◽  
Yan Bai ◽  
Lin Wu

10mm-5A06 aluminum alloy was butt-welded in a single pass by the plasma-gas metal arc (plasma-MIG) welding procedure, the joints were subjected to X-ray inspection, the microstructure and mechanical performance of weld were also studied. The results indicate that plasma-MIG welding is superior to regular conventional MIG welding on the aspects of reducing weld porosity, increasing joint quality and improving deposition efficiency. Good weld joint with less porosity and excellent mechanical properties is obtained, which can reach as 92.62% tensile strength and 85.12% elongation percentage as base metal. Dimples in which the precipitated phase is the solid solution based on Al3Mg2 are observed in fracture scanning electron micrograph and the fracture mode is ductile rupture. α-Al and Al3Mg2 ,α-Al and eutectic structure are observed respectively in fusion area and in weld zone. The wire feed rate and melting rate can come to 14.5m/min and 80g/min respectively for the 1.6mm welding wire by the plasma-MIG welding process on the premise that the tensile strength of the joints meet the requirements.

2016 ◽  
Vol 850 ◽  
pp. 519-525 ◽  
Author(s):  
De Tao Cai ◽  
Shan Guo Han ◽  
Shi Da Zheng ◽  
De Jun Yan ◽  
Jiu Qiang Luo ◽  
...  

Plasma-MIG hybrid welding and MIG welding of 5083 marine aluminum alloy was carried out. The influences of parameters of welding process on the weldments morphology were investigated in order to optimize the welding process parameters. The macrostructure, microstructure, tensile and bending properties of the optimized joint were studied. The results show that Plasma-MIG hybrid welding not only has a synergistic effect of Plasma and MIG welding but also has a high welding efficiency. Welding speed, Plasma current and MIG current have a significant effect on welding penetration and welding morphology. Meanwhile, the ductility and strength property of weld joint was qualified though the bending test and tensile test. The average tensile strength of weld joint is about 285MPa at room temperature, about 86% of the base metal.


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1388
Author(s):  
Ke Yang ◽  
Fei Wang ◽  
Hongbing Liu ◽  
Peng Wang ◽  
Chuanguang Luo ◽  
...  

High-efficiency and high-quality welding has always been the focus of welding research. This article proposes a novel double-pulse, triple-wire MIG welding process for the welding of 6082-T6 aluminum alloy. The process characteristics of welding arc and droplet transfer were studied, and the performances of weld formation, morphology, hardness, and tensile strength were tested for the 1 Hz, 3 Hz, and 5 Hz double-pulse welding and normal-pulse welding. It was found that in the welding process, the pulsed arc steadily alternated among three welding wires without arc interruption, and the arc length changed periodically with the double-pulse frequency. The droplets transferred with a stable one-pulse-one-drop mode. Besides, a proper double-pulse frequency, e.g., 3 Hz in this case, was conducive to forming good welds with regular fish-scale patterns and no pores. The tensile strength of the joint could reach 64% of the base material’s tensile strength, and its fracture belonged to plastic fracture, which occurred in the HAZ. This new welding method will have great potential in aluminum alloy welding.


Author(s):  
Yan Zhang ◽  
DeShui Yu ◽  
JianPing Zhou ◽  
DaQian Sun ◽  
HongMei Li

Abstract To avoid the formation of Ti-Ni intermetallics in a joint, three laser welding processes for Ti alloy–NiTi alloy joints were introduced. Sample A was formed while a laser acted at the Ti alloy–NiTi alloy interface, and the joint fractured along the weld centre line immediately after welding without filler metal. Sample B was formed while the laser acted on a Cu interlayer. The average tensile strength of sample B was 216 MPa. Sample C was formed while the laser acted 1.2 mm on the Ti alloy side. The one-pass welding process involved the creation of a joint with one fusion weld and one diffusion weld separated by the remaining unmelted Ti alloy. The mechanical performance of sample C was determined by the diffusion weld formed at the Ti alloy–NiTi alloy interface with a tensile strength of 256 MPa.


2013 ◽  
Vol 456 ◽  
pp. 451-455
Author(s):  
Jun Yang ◽  
Bo Li ◽  
Qiang Jia ◽  
Yuan Xing Li ◽  
Ming Yue Zhang ◽  
...  

Fatigue test of the welded joint of 5083 aluminum alloy with smooth and height of specimen and the weld zone than the high test measurement and theoretical stress concentration coefficient calculation, the weld reinforcement effect of stress concentration on the fatigue performance of welded joints. The results show that: Smooth tensile strength of specimens for 264MPa, fatigue strength is 95MPa, the tensile strength of the 36%. Higher tensile strength of specimens for 320MPa, fatigue strength is 70MPa, the tensile strength of the 22%. Higher specimen stress concentration coefficient is 1.64, the stress concentration to the weld toe becomes fatigue initiation source, and reduces the fatigue strength and the fatigue life of welded joints.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4157 ◽  
Author(s):  
Isidro Guzmán ◽  
Everardo Granda ◽  
Jorge Acevedo ◽  
Antonia Martínez ◽  
Yuliana Dávila ◽  
...  

Precipitation hardening aluminum alloys are used in many industries due to their excellent mechanical properties, including good weldability. During a welding process, the tensile strength of the joint is critical to appropriately exploit the original properties of the material. The welding processes are still under study, and gas metal arc welding (GMAW) in pulsed metal-transfer configuration is one of the best choices to join these alloys. In this study, the welding of 6061 aluminum alloy by pulsed GMAW was performed under two heat treatment conditions and by using two filler metals, namely: ER 4043 (AlSi5) and ER 4553 (AlMg5Cr). A solubilization heat treatment T4 was used to dissolve the precipitates of β”- phase into the aluminum matrix from the original T6 heat treatment, leading in the formation of β-phase precipitates instead, which contributes to higher mechanical resistance. As a result, the T4 heat treatment improves the quality of the weld joint and increases the tensile strength in comparison to the T6 condition. The filler metal also plays an important role, and our results indicate that the use of ER 4043 produces stronger joints than ER 4553, but only under specific processing conditions, which include a moderate heat net flux. The latter is explained because Mg, Si and Cu are reported as precursors of the production of β”- phase due to heat input from the welding process and the redistribution of both: β” and β precipitates, causes a ductile intergranular fracture near the heat affected zone of the weld joint.


2020 ◽  
Vol 863 ◽  
pp. 85-95
Author(s):  
Truong Minh Nhat ◽  
Truong Quoc Thanh ◽  
Tu Vinh Thong ◽  
Tran Trong Quyet ◽  
Luu Phuong Minh

This study presents conducted heat simulations and experimental jointing flat-plate of aluminum alloy 6061 and SUS 304. Temperature is simulated by the COMSOL software in three states: (1) Preheat the Friction Stir Welding (FSW) by TIG welding, (2) Thermal contact resistance between Aluminium and steel, and (3) The welding process using stiring friction is simulated. The simulations intended to predicting the temperature which is used for preheat and welding process to ensuring the required solid-state welding. The temperature is also determined and checked by a thermal imager comparing with simulation results. Besides, the results of tensile strength is carried out. The Box - Behnken method is used to identify the relationship between the welding parameters (rotation, speed and offset), temperature and tensile strength. The maximum tensile strength is 77% compared to the strength of aluminum alloy. The optimal set of parameters for the process is n = 676 rpm, v = 46 mm / min and x = 0.6 mm. The optimizing welding parameters to achieving good quality of welding process are described. SEM images to determine some properties of welding materials. This is also the basis for initial research to identify some defects in welding of two different materials (IMC thickness and interconnected pores) and the cause of these defects.


2019 ◽  
Author(s):  
Abdulnasser Embark Beleed ◽  
A. I. M. Shaiful ◽  
Muhamad Fahmi Mohd Roslan ◽  
M. N. B. Omar ◽  
Mazlan Mohamed

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
R. Suryanarayanan ◽  
V. G. Sridhar ◽  
L. Natrayan ◽  
S. Kaliappan ◽  
Anjibabu Merneedi ◽  
...  

Friction stir welding is a solid-state welding method that produces joints with superior mechanical and metallurgical properties. However, the negative effects of the thermal cycle during welding dent the mechanical performance of the weld joint. Hence, in this research study, the joining of aluminum tailor welded blanks by friction stir welding is carried out in underwater conditions by varying the welding parameters. The tensile tests revealed that the underwater welded samples showed better results when compared to the air welded samples. Maximum tensile strength of 229.83 MPa was obtained at 1000 rpm, 36 mm/min. The improved tensile strength of the underwater welded samples was credited to the suppression of the precipitation of the secondary precipitates due to the cooling action provided by the water. The lowest hardness of 72 HV was obtained at the edge of the stir zone which indicated the weakest region in the weld zone.


2013 ◽  
Vol 772 ◽  
pp. 94-97 ◽  
Author(s):  
Wei Wu ◽  
Da Jun Chen

Microstructural and mechanical properties of friction stir welded 4mm7075-T6 aluminum alloy were investigated in this paper. The microstructures in WAZ,TMAZ and HAZ were analyzed. The results show that with the rotating speed at 1500 rpm and welding speed at 60mm/min, a defect-free welding joint was obtained. The tensile strength was 362 MPa, which is 65% of base metals; Weld nugget is composed of equiaxed grains; The lowest hardness between the TMAZ and HAZ of advancing side. The fractography revealed that samples failed in ductile mode and the strain fracture appears in advancing side of weld zone.


Sign in / Sign up

Export Citation Format

Share Document