Improvement of Concrete Materials by Bacterial-Mediated Precipitation

2011 ◽  
Vol 306-307 ◽  
pp. 455-458 ◽  
Author(s):  
Pei Hao Li ◽  
Wen Jun Qu

Microbial carbonate precipitation had been proposed as alternative technique for improvement in concrete materials. Laboratory experiments were conducted by bacterially mediated carbonate deposition on the surface and subsurface of concrete specimens. The crystal phase, morphology and growth of the crystal deposited on specimens as well as the efficiency of bonding and protection were analyzed by means of X-ray diffraction (XRD), scanning electron microscope (SEM), and ultrasonic test. Water absorption and the resistance of carbonation of concrete were analyzed by water absorptivity test and concrete accelerated carbonation test, respectively. Results show that phases of crystal are calcite and vaterite. The crystals are deposited uniformly on the surface of specimens. Biodeposotion effectively reduces capillary water uptake and carbonation rate constant.

2011 ◽  
Vol 365 ◽  
pp. 280-286 ◽  
Author(s):  
Pei Hao Li ◽  
Wen Jun Qu

Biodeposition treatment had been proposed as alternative techniques for improvement in the durability of concrete structures. Laboratory experiments were conducted by bacterially mediated carbonate precipitation on the surface and subsurface of specimens of concrete. Some properties of specimens and crystal, such as the crystal phase, morphology and growth of the crystal deposited on specimens, water penetration, the resistance towards carbonation of concrete and so on, were analyzed by XRD, SEM, water absorptivity test and concrete accelerated carbonation test. Some efficiencies of biodeposition treatment for were investigated by experiment. Results show that the mineral crystal deposits uniformly on the surface and subsurface of specimens, phases of crystal are calcite and vaterite. Biodeposition effectively reduces capillary water uptake and leading to carbonation rate constant decreased by 25~40%. Bacterially mediated carbonate mineralization can be an ecological and novel alternative for improvement in the durability of concrete structures.


2011 ◽  
Vol 6 (2) ◽  
pp. 157-167 ◽  
Author(s):  
Yukiko INAGAKI ◽  
Masayoshi TSUKAMOTO ◽  
Hirotoshi MORI ◽  
Susumu NAKAJIMA ◽  
Tetsuya SASAKI ◽  
...  

2019 ◽  
Vol 228 ◽  
pp. 116743 ◽  
Author(s):  
Weilai Zeng ◽  
Yuxi Zhao ◽  
Chi Sun Poon ◽  
Zhangyao Feng ◽  
Zhenmei Lu ◽  
...  

2016 ◽  
Vol 9 (1) ◽  
pp. 59-61
Author(s):  
MNH Khan ◽  
S Kawasaki ◽  
MR Hassan

Bio-cementation is a sand consolidation technology, in which ureolytic bacteria release carbonate from urea hydrolysis in the presence of an excess of calcium ions to form calcite (CaCO3) in-situ. Biocementation is to enhance the strength and stiffness properties of soil and rocks though microbial activity or products. This paper addressed the prospect of microbial carbonate precipitation for erosion control in Bangladesh. Bacterial CaCO3 precipitation under appropriate conditions is a general phenomenon where the ureolytic bacteria uses urea as an energy source and produces ammonia which increases the pH in the environment and generates carbonate, causing Ca2+ and CO32- to be precipitated as CaCO3. This CaCO3 join sand particles and forms rocklike materials that auto-repairs by means of sunlight, seawater, and bacteria as microbially induced carbonate precipitation method. These rock particles when produced artificially is called artificial rock and has the potentiality to protect coastlines from erosion.J. Environ. Sci. & Natural Resources, 9(1): 59-61 2016


2021 ◽  
Author(s):  
Ting Wei ◽  
Noman Yashir ◽  
Fengqiu An ◽  
Syed Asad Imtiaz ◽  
Xian Li ◽  
...  

Abstract Microbially induced carbonate precipitation (MICP) is an advanced bioremediation approach to remediate heavy metals (HMs) contaminated water and soil. In this study, metal tolerant urease-producing bacterial isolates, namely UR1, UR16, UR20 and UR21, were selected based on their urease activity. The efficiency of these isolates in water for Pb and Cd immobilization was explored. Our results revealed that UR21 had the highest removal rates of Pb (81.9%) and Cd (65.0%) in solution within 72 h through MICP. The scanning electron microscopy-energy dispersive x-ray and x-ray diffraction analysis confirmed the structure and the existence of PbCO3 and CdCO3 crystals in the precipitates. In addition, the strain UR21, in combination with urea/eggshell waste (EGS) or both, was further employed to investigate the effect of MICP on soil enzymatic activity, chemical fractions and bioavailability of Pb and Cd. The outcomes indicated that the applied treatments reduced the proportion of soluble-exchangeable Pb and Cd, resulted an increment in carbonated bound Pb and Cd in the soil. The DTPA extractable Pb and Cd was reduced by 29.2% and 25.2% with the treatment of UR21 + urea + EGS as compared to the control. Besides, the application of UR21 and EGS significantly increased the soil pH, cation exchange capacity, and enzyme activities. Our findings may provide a novel perceptive for an eco-friendly and sustainable approach to remediate heavy metal contaminated environment through a combination of metal-resistant ureolytic bacterial strain and EGS.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6211
Author(s):  
Guowang Tang ◽  
Cangqin Jia ◽  
Guihe Wang ◽  
Peizhi Yu ◽  
Haonan Zhang

The use of additives has generated significant attention due to their extensive application in the microbially induced calcium carbonate precipitation (MICP) process. This study aims to discuss the effects of Na-montmorillonite (Na-MMT) on CaCO3 crystallization and sandy soil consolidation through the MICP process. Compared with the traditional MICP method, a larger amount of CaCO3 precipitate was obtained. Moreover, the reaction of Ca2+ ions was accelerated, and bacteria were absorbed by a small amount of Na-MMT. Meanwhile, an increase in the total cementing solution (TCS) was not conducive to the previous reaction. This problem was solved by conducting the reaction with Na-MMT. The polymorphs and morphologies of the CaCO3 precipitates were tested by using X-ray diffraction and scanning electron microscopy. Further, when Na-MMT was used, the morphology of CaCO3 changed from an individual precipitate to agglomerations of the precipitate. Compared to the experiments without Na-MMT in the MICP process, the addition of Na-MMT significantly reduced the hydraulic conductivity (HC) of sandy soil consolidated.


2008 ◽  
Vol 5 (4) ◽  
pp. 3409-3432
Author(s):  
L. L. Robbins ◽  
K. A. Van Cleave ◽  
P. Ostrom

Abstract. Microbial carbonate precipitation experiments were conducted using the archaeon bacteria Archaeoglobus fulgidus to determine chemical and isotopic fractionation of organic and inorganic carbon into mineral phases. Carbonate precipitation was induced in two different experiments using A. fulgidus to determine the relative abundance of organically derived carbon incorporated into carbonate minerals as well as to define any distinct phases or patterns that could be attributed to the precipitation process. One experiment used a medium containing 13C-depleted organic carbon and 13C-enriched inorganic carbon, and the other used a 14C-labeled organic carbon source. Results indicated that 0.9–24.8% organic carbon was incorporated into carbonates precipitated by A. fulgidus and that this process was mediated primarily by pH and CO2 emission from cells. Data showed that the carbon in the CO2 produced from this microorganism is incorporated into carbonates and that the rate at which precipitation occurs and the dynamics of the carbonate precipitation process are strongly mediated by the specific steps involved in the biochemical process for lactate oxidation by A. fulgidus.


Sign in / Sign up

Export Citation Format

Share Document