Numerical Simulation and Analysis of Interior Flow Field in Control Valves under the Blocking Fault

2011 ◽  
Vol 317-319 ◽  
pp. 1452-1455 ◽  
Author(s):  
Yan Tao An ◽  
Yong Wang ◽  
Jun Gang Wang

Establish interior flow field model of the control valves under the blocking fault, using the CFD simulation and analysis the internal flow field of the control valve under the blocking and the trouble-free. The research indicates that blocking changes the fluid state of motion, causes the vortex in the valve core, resulting energy loss and reduces valve control performance.

2013 ◽  
Vol 712-715 ◽  
pp. 1263-1267
Author(s):  
Shan Tu ◽  
Shu Ming Wu ◽  
Qi Zhou ◽  
Hong Mei Zhang ◽  
Xiao Qing Zhu

The main inlet component of steam turbine is control valve. The stable operation of the steam turbine control valve is vital for safe and stable operation of the steam turbine and safety production of the power plant. However, due to the complexity of the structure and unsteady characteristics of steam flow in the valve, there is not enough experimental method about the detailed flow characteristics of the area near control valve disc and the inside of the valve chamber up to now. This article is to focus on the simulation of the steam turbine control valve interior flow field which includes the valve pre-inlet channel in different conditions, then find the reasons which caused instability and pressure loss of the control valve by analyzing the flow field details, finally further optimization design. The profile matching of the valve disc and valve seat has a great influence on the interior flow field of control valve, so analysis of the high performance valve disc shape and divergence angle of valve seat is carried out, and the research conclusion is used for guide design and development of the control valve.


2012 ◽  
Vol 621 ◽  
pp. 196-199
Author(s):  
Shui Ping LI ◽  
Ya Li Yuan ◽  
Lu Gang Shi

Numerical simulation method of the internal flow field of fluid machinery has become an important technology in the study of fluid machinery design. In order to obtain a high-performance cement slurry mixer, computational fluid dynamics (CFD) techniques are used to simulate the flow field in the mixer, and the simulation results are studied. According to the analysis results, the structural parameters of the mixer are modified. The results show the mixer under the revised parameters meet the design requirements well. So CFD analysis method can shorten design period and provide valuable theoretical guidance for the design of fluid machinery.


2014 ◽  
Vol 644-650 ◽  
pp. 4682-4685
Author(s):  
Zhi Jian Wang ◽  
Tian Zhu Zhang ◽  
Jin Shang ◽  
Metsakeu Kong Evariste

In this paper, calculating fluid dynamics (CFD) method is utilized for analyzing the precision compound sand control screen internal flow field so as to establish appropriate models. During this numerical calculation, by using the - turbulence model is used to simulate the resistance characteristics under different working conditions when crude oil flows through precision compound sand control screen, analyze its speed change rule, flow path and pressure distribution, etc. The use of porous media model to simulate the resistance of the oil screen effect, the oil screen is replaced by the porous jump surface to simulate the strainer of pressure drop. To screen sand control performance and reduce the flow resistance to provide theoretical support, make the reservoir production losses to a minimum.


2011 ◽  
Vol 418-420 ◽  
pp. 2006-2011
Author(s):  
Rui Zhang ◽  
Cheng Jian Sun ◽  
Yue Wang

CFD simulation and PIV test technology provide effective solution for revealing the complex flow of hydrodynamic coupling’s internal flow field. Some articles reported that the combination of CFD simulation and PIV test can be used for analyzing the internal flow field of coupling, and such analysis focuses on one-phase flow. However, most internal flow field of coupling are gas-fluid two-phase flow under the real operation conditions. In order to reflect the gas-fluid two-phase flow of coupling objectively, CFD three-dimensional numerical simulation is conducted under two typical operation conditions. In addition, modern two-dimensional PIV technology is used to test the two-phase flow. This method of combining experiments and simulation presents the characteristics of the flow field when charging ratios are different.


2014 ◽  
Vol 983 ◽  
pp. 338-341
Author(s):  
Yan Tao An ◽  
Ru Jian Ma ◽  
Dong Zhao

Internal flow field and noise of outlet blockage fault and trouble-free for control valve are studied by CFD. The study shows that the pressure of front-end and back-end for blockage is respectively increased, but the upper pressure is reduced. Two strong vortexes are formed at front-end and back-end of blockage, which reduce noise of pipe after valve.


2012 ◽  
Vol 455-456 ◽  
pp. 1002-1008 ◽  
Author(s):  
Yi Ming Xu ◽  
Shi Ming Xu

Numerical simulation is used for researching the transient characteristic and internal characteristic of the reactor coolant pump under station blackout accident. The simulation method has been presented by analyzing difference scheme for governing equations. The analytical model of reactor coolant pump flow field has been established by analyzing adequately the influence of varying rotation speed to the pump external characteristic. Finally, the pump internal flow characteristic is exposed.


2019 ◽  
Vol 118 ◽  
pp. 02047
Author(s):  
Hongguang Zhu ◽  
Rui Jing

The anaerobic fermentation produces biogas with the participation of sensitive microorganisms. The smooth fermentation needs to ensure good heat transfer and mass transfer effects. Stirring is very important to create these fermentation conditions. In this paper, the computational fluid dynamics method is used to simulate the flow field inside a fully-mixed stirred anaerobic reactor. It is divided into a single-layer six-leaf open-type turbine with baffles and two-layer four-leaf inclined 45-degree paddles. Group conditions, and quantitative calculation and analysis of the internal flow field of the simulated reactor. The effects of different blades and different stirring speeds are investigated. The results show that the double-layer oblique upward paddle can produce a better axial velocity distribution, which is more conducive to the formation of a large fluid loop structure that circulates up and down. The average speed of double-layer agitation at 125-320 rpm is less than the average speed of a single layer, but the speed of double-layer agitation at 60 rpm is greater than the speed of a single layer.


2014 ◽  
Vol 535 ◽  
pp. 495-499
Author(s):  
Jing Song ◽  
Wei He ◽  
Zhe Kun Li ◽  
Wen Li Shi

Analyzed the research status of hydrocyclone separation. By using CFD software, the important parameters of velocity and pressure in the hydrocyclone are analyzed and contrasted. Through simulation, it can accurately reflect the internal flow field, and can be used to predict the hydrocyclone separation performance. The results of flow field simulation will help to finish structure design of hydrocyclone and to provide the basis for the optimization design of hydrocyclone.


Author(s):  
Hong-Jie Wang ◽  
Ru-Zhi Gong ◽  
De-Ping Lu ◽  
Zhong-De Wu ◽  
Feng-Chen Li

Thrust bearing is a key component of large-scale water turbine. It closely relates to the efficiency of large-scale water turbines, and even determines whether the large-scale turbine can operate normally. With the development of the capacitance of water turbines, thrust bearing will develop to the direction of high speed and heavy load. The structure, strength, lubrication and the characteristic of heat radiation of large-scale thrust bearing were often researched in the past. To study the flow condition of the large-scale thrust bearing and analyze the load characteristics, CFD simulation was carried out on the model of thrust bearing. In this study, CFD method was used to simulate the internal flow field of the large-scale thrust bearing. The model researched was a thrust bearing for 1000MW water turbines. The diameter of the thrust bearing was over 5.8 meters, and the maximum thrust load of the bearing can reach to 60MN. The thin gap between the runner and the pad was usually neglected in the published CFD calculations of thrust bearing. But the thin gap was taken into account in this investigation. 1/12 of the model was used as the computational field and periodic boundary was used in the calculation. The standard κ-ε turbulence model was used to simulate the thrust bearing model, and the flow field in the thrust bearing was obtained. The thin gap between the runner and the pad is a wedge. The pressure and velocity distribution in the thrust bearing and thin gap was calculated respectively with conditions of different thin gaps and different rotational speeds of runner. After that, the relationship between carrying capacity and the size of clearance or the speed of the runner through analyzing the data has been obtained from the results of the calculation.


2014 ◽  
Vol 980 ◽  
pp. 112-116
Author(s):  
Dong Yue Qu ◽  
Jia Lei Xu ◽  
Yang Yang Huang ◽  
Xiao Zeng Xie

The medium flow of control valve is a typical complex unsteady flow, the internal flow is very unstable which leads to trim or body with vibration of different amplitude, therefore, control valve has been a failure-prone components in the turbine inlet steam system. This paper take the new valve as the research object, by computational fluid dynamics (CFD) software, the numerical simulation of the internal steam steady state flow field of valve normal work a typical opening in the process of opening is made, and obtain the internal flow field visualization distribution and flow characteristics of control valve. Extract unstable place pressure pulsation of the flow field, get the pulse frequency, and provide the basis for the design, optimization and application of low vibration noise control valve.


Sign in / Sign up

Export Citation Format

Share Document