Design and Optimization of Injector Structure in Diesel Engine Based on ISIGHT Platform DOE Methods

2011 ◽  
Vol 335-336 ◽  
pp. 1376-1380
Author(s):  
Xin Ying Wu ◽  
Guang Yao Ouyang ◽  
Yu Xue Li

The traditional design method of injector structure cannot meet the demand of farther improved performance,the change of modern environment demand not only the optimization of one performance but also the optimization of various comprehensive performance.iSIGHT is a multidisciplinary design optimization platform that offer a integrated designenvironment and advanced design optimization methods. The optimization design of injector structure based on design of experiment of iSIGHT platform to improve the spray quality of injector is implemented.

Author(s):  
Zhe Jiang ◽  
Weicheng Cui ◽  
Xiaoping Huang

In the traditional design of a Truss Spar, designers usually choose different discipline as major concentration in different design phases. The coupling effect among disciplines can hardly be accounted for. Multidisciplinary design optimization has been proved to be an effective tool for the design of complex engineering systems, which takes all disciplines into account at the same time and exploit coupling effect among disciplines, thereby achieving the optimal system solution. In this paper, a multidisciplinary optimization scheme for a Truss Spar is firstly developed and the Truss Spar is decomposed into four modules: weight module, hydrodynamic module, structure module and stability module. Response surface method is used to replace the high-fidelity analysis to perform the approximate mathematical models of the objective function/constraints as a function of design variables. In order to enhance the accuracy of the predicted optimum, the response surface models are continuously updated using the information obtained from the numerical simulation of latest iterative results. Finally, an optimal design solution, which satisfies all the constraints, is obtained using collaborative optimization. The characteristics of the optimized design solution including hull weight, heave response, stability performance and strength of the bottom deck, are much improved comparing with traditional design.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Xiaojian Sun ◽  
Jianquan Ge ◽  
Tao Yang ◽  
Qiangqiang Xu ◽  
Bin Zhang

Integral solid propellant ramjet (ISPR) supersonic cruise vehicles share the characteristic that they are highly integrated configurations. The traditional design of vehicles cannot achieve a balance between computational expense and accuracy. A multifidelity multidisciplinary design optimization (MDO) platform has been developed in this study. The focus of the platform is on ISPR supersonic cruise vehicles. Firstly, codes of discipline with different levels of fidelity (LoF) were established, such as geometry, aerodynamics, radar cross-section calculations, propulsion, mass, and trajectory discipline codes. Secondly, two MDO frameworks were constructed through discipline codes. A low LoF MDO framework is suitable for conceptual design, and a medium LoF MDO framework is suitable for preliminary design. Finally, taking the optimization problem with the minimum overall detection probability of flight trajectory as an example, the low LoF framework first explores the entire design space to achieve the mission requirements, and then, the medium LoF MDO framework accepts the low LoF framework optimization parameters. Hence, the optimization target is reached with more detailed parameters and higher fidelity. Additionally, an example for a solid propellant missile with minimum total mass is tested by the platform. The study results show that the multifidelity MDO framework not only exploits interactions between the disciplines but also improves the accuracy of optimization results and reduces the iteration time.


Author(s):  
Xiaokai Chen ◽  
Chenyu Wang ◽  
Guobiao Shi ◽  
Mingkai Zeng

In order to improve the performance of automotive product platforms and product families while keeping high development efficiency, a product family optimization design method that combines shared variable decision-making and multidisciplinary design optimization (MDO) is proposed. First, the basic concepts related to product family design optimization were clarified. Then, the mathematical description and MDO model of the product family optimization problem were established, and the improved product family design process was given. Finally, for the chassis product family optimization problem of an automotive product platform, the effectiveness of the proposed optimization method, and design process were exemplified. The results show that the collaboratively optimized product family can effectively handle the coordination between multiple products and multiple targets, compared to Non-platform development, it can maximize the generalization rate of vehicle parts and components under the premise of ensuring key performance, and give full play to the advantages of product platforms.


2003 ◽  
Vol 47 (01) ◽  
pp. 1-12 ◽  
Author(s):  
Daniele Peri ◽  
Emilio F. Campana

Whereas shape optimal design has received considerable attention in many industrial contexts, the application of automatic optimization procedures to hydrodynamic ship design has not yet reached the same maturity. Nevertheless, numerical tools, combining together modern computational fluid dynamics and optimization methods, can aid in the ship design, enhancing the operational performances and reducing development and construction costs. This paper represents an attempt of applying a multidisciplinary design optimization (MDO) procedure to the enhancement of the performances of an existing ship. At the present stage the work involves modeling, development, and implementation of algorithms only for the hydrodynamic optimization. For a naval surface combatant, the David Taylor Model Basin (DTMB) model ship 5415, a three-objective functions optimization for a two-discipline design problem is devised and solved in the framework of the MDO approach. A simple decision maker is used to order the Pareto optimal solutions, and a gradient-based refinement is performed on the selected design.


2010 ◽  
Vol 44-47 ◽  
pp. 1135-1140 ◽  
Author(s):  
You Xin Luo ◽  
Hui Jun Wen ◽  
Heng Shu Li

In this paper, the basic concepts and methods of multidisciplinary design optimization, uncertainty analysis and robust design have been introduced. According to the features of a multi-functional open-air hydraulic drill, a new design theory called multidisciplinary robust optimization design was discussed. This theory can undertake uncertainty analysis and robust design in multidisciplinary design optimization. It fully considers both the synergy among each disciplinary or subsystem in the multi-functional open-air hydraulic drill to get the optimal solution to the whole system and the effect of the uncertainty factors upon the drill quality, and adopts the parallel design to improve the quality, robustness and reliability of the drill, to shorten the market cycles of products, to reduce product cost. Finally, the design points were discussed in detail in the paper.


2012 ◽  
Vol 215-216 ◽  
pp. 362-367
Author(s):  
Yi Qi Huang ◽  
Gan Wei Cai ◽  
Yu Jiang ◽  
Zhao Yu Luo

This paper introduced the method of multidisciplinary design optimization based on genetic algorithm. The basic structure and new auxiliary braking mechanism of permanent magnet retarder was analyzed. The influences of magnetic field parameters, structural design parameters, rotor parameters and permanent magnet temperature parameters on the behaviors performance of the permanent magnet retarder were discussed. The conceptual model of permanent magnet retarder was developed to maximize the brake torque of the permanent magnet retarder. The design variables included the radial width and the axis length of permanent magnet, the number of permanent magnet, the radius of rotor, the thickness of rotor, and the air gas. The constraint conditions included permitting temperature of rotor, saturation magnetic flux density of magnet material, and relation of structural geometry. The results of design optimization variables were obtained by applying genetic algorithm. The multidisciplinary design optimization in this paper is an effective method for the global design optimization of the permanent magnet retarder.


2012 ◽  
Vol 591-593 ◽  
pp. 132-135
Author(s):  
Xiao Hui Wang ◽  
Yan Xu ◽  
Ren Wei Xia

This paper presents the multidisciplinary design optimization (MDO) for an earth observation satellite. The aim of the paper is to use various multidisciplinary optimization methods to optimize the numerical models of an earth observation satellite under iSIGHTTM software environment. Based on the best earth observation criteria, a mathematical model of the earth observation satellite is proposed, which considers the design variables, the state variables and constraints of the payload system, the attitude system, the control system, the power system, the structure system, and the propulsion system. This paper conducts the optimization by using the above three methods, and compare the efficiency and applicability among the methods.


2013 ◽  
Vol 694-697 ◽  
pp. 911-914 ◽  
Author(s):  
Jun Zhang ◽  
Bing Zhang

In order to improve the efficiency and robustness of reliability-based multidisciplinary design optimization (RBMDO), a new collaborative strategy (named C-RBMDO) which integrates performance measure approach (PMA) and concurrent subspace optimization strategy (CSSO) is proposed. Both the mathematical model and optimization procedure are put forward. The traditional triple-level nested flowchart of RBMDO is decoupled with the sequential optimization and reliability assessment (SORA). The deterministic multidisciplinary design optimization and the multidisciplinary reliability analysis are executed by CSSO and PMA respectively. Finally, the proposed method is verified through the design example of gear transmission.


Sign in / Sign up

Export Citation Format

Share Document