Effects of Solution and Two-Stage Ageing Treatment Process on Microstructure and Properties of 6061 Aluminum Alloy

2011 ◽  
Vol 335-336 ◽  
pp. 822-825
Author(s):  
Shi Xing Zhang ◽  
Gang Yi Cai ◽  
Hai Hong Wu

Comprehensive performance of 6061 aluminum alloy was improved by solution treatment and two-step ageing treatment in this paper . The effects of different thermal processing parameters on the microstructure and mechanical properties of 6061 aluminum alloy were studied. The experimental results show that the optimal process of solution treatment for 6061 aluminum alloy is heated at 500°C for 10min. After first-stage aging, the hardness measurements and microstructure analysis results show that the hardness increased with increasing aging temperature, and reached peak value at temperature 180°C for 10h, while in the second-stage ageing treatment, the sample got the ageing peak value at 220°C for 1h. After two-stage treatment, the grains of 6061 aluminum alloy became uniform and fine and the second phase distributed along the grain boundary and play an important role of dispersion strengthening. Above all, the optimal heat treatment process of 6061 aluminum alloy is solution treated at 500°C for 10min, as well as ageing at 180°C, 10h and 220°C, 1h

2011 ◽  
Vol 239-242 ◽  
pp. 238-242
Author(s):  
Peng Hui Deng ◽  
Tie Cheng Li ◽  
Gang Yi Cai

In this study, the comprehensive performance of AZ80 magnesium alloy was improved by solution treatment and multi-step ageing treatment. The effects of different thermal processing parameters on the microstructure and mechanical properties of AZ80 magnesium alloy were studied. The experimental results show that the optimal process of solution treatment for AZ80 alloy is heated at 420°C for 5h, which the β phase dissolve thoroughly into the α substrate. After first-stage ageing treatment, the hardness of samples varied as the ageing temperature, and had higher hardeness at temprature 180°C. While in the second-stage ageing treatment, the sample got the ageing peak value at 210°C for 10h. After two-stage treatment, the grains of AZ80 magnesium alloy became homogeneous and fine, and the second phase distributes along the grain boundary and plays an important role of dispersion strengthening. Above all, the optimal heat treatment process of AZ80 magnesium is solution treated at 420°C for 5h, as well as ageing at 180°C, 4h and 210°C, 10h.


2011 ◽  
Vol 335-336 ◽  
pp. 805-808 ◽  
Author(s):  
Shi Xing Zhang ◽  
Hai Hong Wu ◽  
Gang Yi Cai

The mechanical properties of a 7A04 aluminum alloy were improved by deformation strengthening and phase transformations strengthening adopting thermomechanical treatment, whose process include solution treatment, deformation treatment and ageing treatment in turn. The paper focuses on the influences of deforming degree and ageing process on microstructure and properties of 7A04 aluminum alloy. The experimental results show that hardness increased with increasing deformation ratio, and the value are greatly higher than that of samples after solution treatment. The results of ageing after deformation show that the hardness enhanced with prolonging the ageing time, which reach the peak value at 16 hours. In addition, the microstructure became more homogeneous and the grain was refined obviously by metallography microscope observation. The second phase precipitate dispersedly to strengthen the alloy. Above all, in order to obtain the better mechanical properties, the optimal thermomechanical treatment processes are solution treatment at 470°C for 2h, deformation with ratio of 40% as well as ageing at 120°C for 16h.


2011 ◽  
Vol 239-242 ◽  
pp. 847-850
Author(s):  
Gang Yi Cai ◽  
Yu Yong Yang ◽  
Xiao Hua Li

The mechanical properties of Al-Zn-Mg aluminum alloy were improved by deformation strengthening and transformations strengthening adopting thermomechanical treatment, whose process are solution treatment, preageing treatment, deformation treatment and ageing treatment in turn. The paper focuses on the influences of deforming degree and ageing process on microstructure and properties of Al-Zn-Mg aluminum alloy. The experimental results show that hardness increased with increasing deformation ratio, and the value are greatly higher than that of samples after solution treatment. The results of ageing after deformation show that the hardness enhanced with prolonging the ageing time, which reach the peak value at 16 hours. In addition, the microstructure became more homogeneous and the grain was refined obviously by metallography microscope observation. The second phase precipitate dispersedly to strengthen the alloy. Above all, in order to obtain the better mechanical properties, the optimal thermomechanical treatment processes are solution treatment at 470°C for 2h, preageing treatment at 140°C for 24h, deformation with ratio of 40% as well as ageing at 120°C for 16h.


2011 ◽  
Vol 179-180 ◽  
pp. 354-358
Author(s):  
Gang Yi Cai ◽  
Xiao Ting Huang ◽  
Peng Hui Deng

Thermomechanical treatment was adopted to improve the comprehensive performance of AZ80 magnesium alloys in this paper. The influence of varying the thermal processing parameters and deformation on the microstructure and mechanical properties of AZ80 magnesium alloy was studied, and the optimal process of themomechanical treatment was obtained. The experimental results show that the hardness increased with the increasing of deformation and the hardness is up to the peak value with 30% deformation. After aging, the hardness measurements and microstructure analysis results show that the hardness increased with increasing aging temperature, and reached the peak value at temperature 170°C, while the hardness decreased sharply when the temperature goes beyond 170°C. After thermomechanical treatment, the grains of AZ80 magnesium alloy became uniform and fine. The roles of both deformation strengthening and dispersion strengthening were to improve the mechanical property of AZ80 magnesium alloy.


2021 ◽  
Vol 11 (12) ◽  
pp. 5550
Author(s):  
Yuqiang Chen ◽  
Chuang Xiong ◽  
Wenhui Liu ◽  
Suping Pan ◽  
Yufeng Song ◽  
...  

The influences of cold rolling and subsequent heat treatment on the microstructure evolution of 2524 alloy were investigated using an orientation distribution function (ODF) and electron back-scattered diffraction (EBSD). A preparation method of 2524-T3 aluminum alloy with a strong Brass texture was developed, and its effect on the fatigue properties of the alloy was investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that with the increase in cold rolling deformation from 0% to 80%, the volume fractions of Brass, copper, and S textures in the 2524-T3 alloy also increase, especially in the case of Brass and S textures. However, the volume fractions of cube and Goss textures are reduced significantly, especially for cube textures, which are decreased by 57.4%. Reducing coarse second-phase particles (CSPs) is conducive to the formation of a strong deformation texture during cold rolling. A 10% deformation at each rolling pass, followed by a step annealing, helps the preservation of a Brass texture even after solution treatment at 500 °C for 0.5 h, while a large cold deformation followed by high-temperature annealing helps the formation of a strong cube texture. The Brass texture can enhance the strength while decreasing the fatigue crack growth resistance of this alloy.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1496 ◽  
Author(s):  
Lei Liu ◽  
Yunxin Wu ◽  
Hai Gong

To explore the effective way of grain refinement for 2219 aluminum alloy, the approach of ‘thermal compression tests + solid solution treatment experiments’ was applied to simulate the process of intermediate thermo-mechanical treatment. The effects of deformation parameters (i.e., temperature, strain, and strain rate) on microstructural evolution were also studied. The results show that the main softening mechanism of 2219 aluminum alloy during warm deformation process is dynamic recovery, during which the distribution of CuAl2 phase changes and the substructure content increases. Moreover, the storage energy is found to be decreased with the increase in temperature and/or the decrease in strain rate. In addition, complete static recrystallization occurs and substructures almost disappear during the solid solution treatment process. The average grain size obtained decreases with the decrease in deforming temperature, the increase in strain rate, and/or the increase in strain. The grain refinement mechanism is related to the amount of storage energy and the distribution of precipitated particles in the whole process of intermediate thermal-mechanical treatment. The previously existing dispersed fine precipitates are all redissolved into the matrix, however, the remaining precipitates exist mainly by the form of polymerization.


Sign in / Sign up

Export Citation Format

Share Document