Error Inspection for Turbine Vane Based on Reverse Engineering

2011 ◽  
Vol 338 ◽  
pp. 335-338 ◽  
Author(s):  
Gang Tong ◽  
Yu Zhu Li ◽  
Da Wei Wu ◽  
Xiao Guang Han

An error inspection method based on 3D laser scanning measurement is proposed for the purpose of achieving field rapid inspection of turbine vane surface. The 3D model of vane is reconstructed by using the data of form drawing in CATIA. By using handy laser scanner, the point cloud data is obtained from the wood pattern of vane, which is processed in Geomagic Qualify. After registration of vane solid model and point cloud data, the vane surface is rapidly inspected by analyzing 3D error and comparing cross-sectional data.

2013 ◽  
Vol 405-408 ◽  
pp. 3032-3036
Author(s):  
Yi Bo Sun ◽  
Xin Qi Zheng ◽  
Zong Ren Jia ◽  
Gang Ai

At present, most of the commercial 3D laser scanning measurement systems do work for a large area and a big scene, but few shows their advantage in the small area or small scene. In order to solve this shortage, we design a light-small mobile 3D laser scanning system, which integrates GPS, INS, laser scanner and digital camera and other sensors, to generate the Point Cloud data of the target through data filtering and fusion. This system can be mounted on airborne or terrestrial small mobile platform and enables to achieve the goal of getting Point Cloud data rapidly and reconstructing the real 3D model. Compared to the existing mobile 3D laser scanning system, the system we designed has high precision but lower cost, smaller hardware and more flexible.


2014 ◽  
Vol 709 ◽  
pp. 465-468
Author(s):  
Xian Quan Han ◽  
Fei Qin ◽  
Zhen Zhang ◽  
Shang Yi Yang

This paper examines the basic flow and processing of the terrestrial 3D Laser scanning technology in the tunnel survey. The use of the method is discussed, point cloud data which have been registered, cropped can be constructed to a complete tunnel surface model. An example is given to extract the tunnel section and calculate the excavation of the tunnel. Result of the experimental application of this analysis procedure is given to illustrate the proposed technique can be flexibly used according to the need based on its 3D model. The feasibility and advantages of terrestrial 3D laser scanning technology in tunnel survey is also considered.


2012 ◽  
Vol 204-208 ◽  
pp. 618-621
Author(s):  
Bao Xing Zhou ◽  
Jian Ping Yue ◽  
Jin Li

Terrestrial laser scanner (TLS) can provide the measurement of a large number of physical points distributed on the observed surface. A fast earthwork calculating method is proposed based on the redundant number of acquired points, which leads to a very accurate and high resolution reconstruction of the observed surfaces. This paper describes the three main steps of the method, namely the acquisition of the earthwork data based on TLS, the pre-processing of point cloud data, the earthwork calculation and accuracy evaluation based on point cloud data. Furthermore, it illustrates the performance of the proposed method with a validation experiment.


2015 ◽  
Vol 752-753 ◽  
pp. 1401-1405 ◽  
Author(s):  
Hong Jun Ni ◽  
Qing Qing Chen ◽  
Yi Pei ◽  
Yi Lv ◽  
Xing Xing Wang

Model design and rapid prototyping are utilized to manufacture push-ups frame. Point cloud data can be obtained by scanning parts with hand-held laser scanner, and imported into the Imageware to process. The varied points are removed, the missing points are repaired, and then the 3D model is designed through the Pro/E. Finally, the frame model is completed by rapid prototyping printers. The manufacturing period is shorten through the way of putting two technologies in the field of manufacturing together, the production requirements are met, and the business efficiency is improved.


2018 ◽  
Vol 36 (2) ◽  
pp. 122-136 ◽  
Author(s):  
Abdul Fatah Firdaus Abu Hanipah ◽  
Khairul Nizam Tahar

Purpose Laser scanning technique is used to measure and model objects using point cloud data generated laser pulses. Conventional techniques to construct 3D models are time consuming, costly and need more manpower. The purpose of this paper is to assess the 3D model of the Sultan Salahuddin Abdul Aziz Shah Mosque’s main dome using a terrestrial laser scanner. Design/methodology/approach A laser scanner works through line of sight, which indicates that multiple scans need to be taken from a different view to ensure a complete data set. Targets must spread in all directions, and targets should be placed on fixed structures and flat surfaces for the normal scan and fine scan. After the scanning operation, point cloud data from the laser scanner were cleaned and registered before a 3D model could be developed. Findings As a result, the reconstruction of the 3D model was successfully developed. The samples are based on the triangle dimension, curve line, horizontal dimension and vertical dimension at the dome. The standard deviation and accuracy are calculated based on the comparison of the 21 samples taken between the high-resolution and low-resolution scanning data. Originality/value There are many ways to develop the 3D model and based on this study, the less complex ways also produce the best result. The authors implement the different types of dimensions for the 3D model assessment, which have not yet been considered in the past.


2017 ◽  
Vol 865 ◽  
pp. 595-598
Author(s):  
Hui Zeng Yin ◽  
Xin Wei Yang ◽  
Rui Lan Tian ◽  
Xiu Zhi Sui

Pressure vessel is widely used in the industrial engineering. Many materials in pressure vessel are inflammable and explosive dangerous goods. If the accident happens, great harm will be done to the lives and properties of people. Some common methods for studying pressure vessel have obvious drawbacks. 3D laser scanning method uses non-contact measuring method and can directly obtain the point cloud data of the mass surface which can be used to reconstruct any convex surface. According to the advantages of 3D laser scanning method, in this paper, it is introduced to measure the dimensions of flanges in pressure vessel. The experimental results obtained have little errors, which certify that 3D laser scanning method can be used to measure the dimensions of flanges and further study the characteristics of pressure vessel.


Author(s):  
Avar Almukhtar ◽  
Henry Abanda ◽  
Zaid O. Saeed ◽  
Joseph H.M. Tah

The urgent need to improve performance in the construction industry has led to the adoption of many innovative technologies. 3D laser scanners are amongst the leading technologies being used to capture and process assets or construction project data for use in various applications. Due to its nascent nature, many questions are still unanswered about 3D laser scanning, which in turn contribute to the slow adaptation of the technology. Some of these include the role of 3D laser scanners in capturing and processing raw construction project data. How accurate is the 3D laser scanner or point cloud data? How does laser scanning fit with other wider emerging technologies such as Building Information Modelling (BIM)? This study adopts a proof-of-concept approach, which in addition to answering the afore-mentioned questions, illustrates the application of the technology in practice. The study finds that the quality of the data, commonly referred to as point cloud data is still a major issue as it depends on the distance between the target object and 3D laser scanner’s station. Additionally, the quality of the data is still very dependent on data file sizes and the computational power of the processing machine. Lastly, the connection between laser scanning and BIM approaches is still weak as what can be done with a point cloud data model in a BIM environment is still very limited. The aforementioned findings reinforce existing views on the use of 3D laser scanners in capturing and processing construction project data.


2020 ◽  
Vol 10 (23) ◽  
pp. 8680
Author(s):  
Huimin Li ◽  
Chengyi Zhang ◽  
Siyuan Song ◽  
Sevilay Demirkesen ◽  
Ruidong Chang

Quality control is essential to a successful modular construction project and should be enhanced throughout the project from design to construction and installation. The current methods for analyzing the assembly quality of a removable floodwall heavily rely on manual inspection and contact-type measurements, which are time-consuming and costly. This study presents a systematic and practical approach to improve quality control of the prefabricated modular construction projects by integrating building information modeling (BIM) with three-dimensional (3D) laser scanning technology. The study starts with a thorough literature review of current quality control methods in modular construction. Firstly, the critical quality control procedure for the modular construction structure and components should be identified. Secondly, the dimensions of the structure and components in a BIM model is considered as quality tolerance control benchmarking. Thirdly, the point cloud data is captured with 3D laser scanning, which is used to create the as-built model for the constructed structure. Fourthly, data analysis and field validation are carried out by matching the point cloud data with the as-built model and the BIM model. Finally, the study employs the data of a removable floodwall project to validate the level of technical feasibility and accuracy of the presented methods. This method improved the efficiency and accuracy of modular construction quality control. It established a preliminary foundation for using BIM and laser scanning to conduct quality control in removable floodwall installation. The results indicated that the proposed integration of BIM and 3D laser scanning has great potential to improve the quality control of a modular construction project.


2012 ◽  
Vol 503-504 ◽  
pp. 215-218 ◽  
Author(s):  
Da Wei Wu ◽  
Xiao Fei Ding ◽  
Gang Tong

This paper analyzes the structure of molding tool for composite component, and proposes a method of surface design of molding tool based on reverse engineering. By using handy laser scanner, the point cloud data is obtained from the composite component, which is processed in Geomagic Studio. Then the processed data is imported into CATIA for Surface fitting. The surface of molding tool for composite component is rapidly and accurately designed by analyzing 3D error and comparing cross-sectional data.


2020 ◽  
Vol 13 (1) ◽  
pp. 55
Author(s):  
Paweł Trybała ◽  
Jan Blachowski ◽  
Ryszard Błażej ◽  
Radosław Zimroz

Usually, substantial part of a mine haulage system is based on belt conveyors. Reliability of such system is significant in terms of mining operation continuity and profitability. Numerous methods for conveyor belt monitoring have been developed, although many of them require physical presence of the monitoring staff in the dangerous environment. In this paper, a remote sensing method for assessing a conveyor belt condition using the Terrestrial Laser Scanner (TLS) system has been described. For this purpose a methodology of semi-automatic processing of point cloud data for obtaining the belt geometry has been developed. The sample data has been collected in a test laboratory and processed with the proposed algorithms. Damaged belt surface areas have been successfully identified and edge defects were investigated. The proposed non-destructive testing methodology has been found to be suitable for monitoring the general condition of the conveyor belt and could be exceptionally successful and cost-effective if combined with an unmanned, robotic inspection system.


Sign in / Sign up

Export Citation Format

Share Document