Oil and Gas Accumulation Rules and Controlling Factors on Shuang 1 Member in Moliqing Area

2011 ◽  
Vol 361-363 ◽  
pp. 43-46
Author(s):  
Ling Yang ◽  
Zhi Dong Bao ◽  
Peng Fei Hou ◽  
Yi Jing Du ◽  
Bao Lei Liu

Through analysis on oil and gas accumulation characteristics, the vertical and horizontal distributions of reservoirs were summarized and the controlling factors of oil and gas accumulation were discussed in this paper. It is considered that reservoirs of Shuang 1 Member mainly distribute in Jianshan structural belt; the structural high or structure slopes are favorable accumulation zones, and the oil and gas accumulation and distribution is obviously controlled by local fault noses or fault block trap structures; the oil and gas always distribute near sequence boundaries; sublacustrine fan and fan delta sandbodies are favorable reservoirs for oil and gas accumulation; the normal fault sealing is very important for oil and gas accumulation of the Shuang 1 Member.

1991 ◽  
Vol 14 (1) ◽  
pp. 21-32 ◽  
Author(s):  
I. Inglis ◽  
J. Gerard

AbstractAbstract: Situated in the southeastern part of the East Shetland Basin, the Alwyn North Field produces oil and gas from Brent Group reservoirs and gas and condensate from the Statfjord Formation. The structural style is of tilted and eroded fault blocks dipping to the west and aligned north-south conforming to the principal normal fault trend. NE-SW cross elements further separate the hydrocarbon accumulations. The hydrocarbon columns are restricted to the Tarbert and upper part of the Ness Formation of the Brent Group, in sediments associated with the retreat of the Brent delta. The Statfjord Formation was deposited in an alluvial, fan-delta setting with increasing marine influence towards the top of the formation.


2015 ◽  
Vol 733 ◽  
pp. 39-42
Author(s):  
Zi Li Fan

To understand the oil and gas accumulation rules and main controlling factors of H Basin at different phases, approaches such as reservoir dissection and analysis on the spatial allocation of reservoir accumulation conditions are adopted to divide the reservoir of the main fault depression zones of central H Basin into early and late phases. The widely-spread oil and gas at early phase are obviously more than that of the late phase. The main controlling factors of reservoir accumulation at early phase include source rocks area, antithetic faults - tilted upheavals and sand body of fan delta front subfacies while that of the late phase include sources rocks area, inverted structure and long-term developed fractures. The achievement of the study expounded in this paper is significantly important to correctly understand the oil and gas accumulation rules of complicated faulted-block fields and guide the oil and gas exploration activities.


2020 ◽  
pp. 1-21
Author(s):  
Zili Zhang ◽  
Xiaomin Zhu ◽  
Ruifeng Zhang ◽  
Sheng Fu ◽  
Jing Zhang

In addition to core, logging, and other previous research results, this paper determines the fault development and tectonic evolution process of the Baxian sag with the Paleogene rift stage based on 3D seismic data. The Paleogene tectonic evolution of the sag can be divided into three episodes and six evolution stages, and three types of faults are identified: intensely active normal, active normal, and weakly active normal. One first-order sequence, three second-order sequences, and fourteen third-order sequences of the Paleogene Baxian sag were created, and fifteen sequence boundaries were recognised. According to the rifting background and sedimentary facies development characteristics of each episode, five combination types of the depositional system associations were identified, including alluvial fan-fluvial and braided-delta-lacustrine in an early rifting episode, delta-lacustrine and nearshore subaqueous fan-lacustrine in the middle rifting episode, and fluvial-flood plain in the late rifting episode. Six response models of filling and the evolution process in Paleogene Baxian sag were concluded. The multi-episodes tectonic cycles of faulted lake basins resulted in complex paleogeomorphology and variable provenance supply, forming abundant sequence structure patterns and different filling and evolution processes of faulted lake basins. The stable rifting stage is favourable to form and preserve high-quality source rock, and develop various sedimentary facies and sandbody types, which is a potential area for exploration of a lithologic stratigraphic oil and gas reservoir.


2013 ◽  
Vol 734-737 ◽  
pp. 1175-1178
Author(s):  
Hong Qi Yuan ◽  
Ying Hua Yu ◽  
Fang Liu

Based on the analysis of the relationships between the conditions of structures, sedimentations, source rocks, cap rocks, faults, oil and gas migration passages and traps and hydrocarbon accumulation, the controlling factors of hydrocarbon accumulation and distribution was studied in Talaha-changjiaweizi area. It is held that the source rocks control the hydrocarbon vertical distribution, the drainage capabilities control the hydrocarbon plane distribution, fracture belts control the hydrocarbon accumulation of Talaha syncline, underwater distributary channel is a favorable accumulation environment and reservoir physical properties control the oil and water distributions. Therefore, it is concluded that source rocks, fracture belts, sedimentary microfacies and reservoir physical properties are the main controlling factors of hydrocarbon accumulation and distribution in Talaha-changjiaweizi area.


2007 ◽  
Vol 50 (S2) ◽  
pp. 27-38 ◽  
Author(s):  
ZhanLi Ren ◽  
Sheng Zhang ◽  
ShengLi Gao ◽  
JunPing Cui ◽  
YuanYuan Xiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document