Mechanical Equipment Coordination and Operation Mode of Wuhan-Guangzhou Passenger Dedicated Line Large Cross-Section Tunnel Construction

2011 ◽  
Vol 393-395 ◽  
pp. 166-169
Author(s):  
Zhi Min Xiang ◽  
Ren Ai Yuan

studies were carried out to determine the principles of mechanical equipment coordination for large cross-section tunnel construction in combination with the tunnel construction practices within the sections under the charge of China Railway First Group Co., Ltd. on Wuhan-Guangzhou PDL and with a view to optimize the allocation of resources and improve the efficiency of large cross-section tunnel construction. Directed to different procedures such as excavation, support, waterproofing, drainage and lining, the mechanical equipment coordination and operation mode of large cross-section tunnels on the passenger dedicated line were established and the mechanized working faces were formed, which provide experience and reference for the large cross-section tunnel construction of passenger dedicated lines.

2013 ◽  
Vol 838-841 ◽  
pp. 1441-1446
Author(s):  
Chao Yue Zhou ◽  
Yong Fang ◽  
Ya Peng Fu ◽  
Ge Cui

It is a challenge to deal with karst in the construction of large cross-section tunnel. Under the background of Shuangbei Highway Tunnel, a new kind of grouting technology is introduced. According to hydrogeology, field tests are carried out to select grouting materials and proportion of mixture. Combined with the project practice, grouting construction technology is discussed such as grouting equipments, grouting parameters, operation technique, grouting ending standards. It has been proved that the technology is effective in tunnel construction.


2020 ◽  
Vol 2 ◽  
pp. 46-57
Author(s):  
S.V. Maltsev ◽  
◽  
B.P. Kazakov ◽  
A.G. Isaevich ◽  
M.A. Semin ◽  
...  

2021 ◽  
Vol 11 (15) ◽  
pp. 6946
Author(s):  
Bartłomiej Podsiadły ◽  
Andrzej Skalski ◽  
Wiktor Rozpiórski ◽  
Marcin Słoma

In this paper, we are focusing on comparing results obtained for polymer elements manufactured with injection molding and additive manufacturing techniques. The analysis was performed for fused deposition modeling (FDM) and single screw injection molding with regards to the standards used in thermoplastics processing technology. We argue that the cross-section structure of the sample obtained via FDM is the key factor in the fabrication of high-strength components and that the dimensions of the samples have a strong influence on the mechanical properties. Large cross-section samples, 4 × 10 mm2, with three perimeter layers and 50% infill, have lower mechanical strength than injection molded reference samples—less than 60% of the strength. However, if we reduce the cross-section dimensions down to 2 × 4 mm2, the samples will be more durable, reaching up to 110% of the tensile strength observed for the injection molded samples. In the case of large cross-section samples, strength increases with the number of contour layers, leading to an increase of up to 97% of the tensile strength value for 11 perimeter layer samples. The mechanical strength of the printed components can also be improved by using lower values of the thickness of the deposited layers.


Author(s):  
Ricardo Mejia-Alvarez ◽  
Joseph Augustus Kerwin ◽  
Suhas Jeevan Vidhate ◽  
Paul Sandherr ◽  
Evan Patton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document