The Grouting Technology of Large-Section Highway Tunnel in Water-Rich Karst Formations

2013 ◽  
Vol 838-841 ◽  
pp. 1441-1446
Author(s):  
Chao Yue Zhou ◽  
Yong Fang ◽  
Ya Peng Fu ◽  
Ge Cui

It is a challenge to deal with karst in the construction of large cross-section tunnel. Under the background of Shuangbei Highway Tunnel, a new kind of grouting technology is introduced. According to hydrogeology, field tests are carried out to select grouting materials and proportion of mixture. Combined with the project practice, grouting construction technology is discussed such as grouting equipments, grouting parameters, operation technique, grouting ending standards. It has been proved that the technology is effective in tunnel construction.

2014 ◽  
Vol 1065-1069 ◽  
pp. 2058-2062
Author(s):  
Yong Jun Xia ◽  
Wen Ming Mei ◽  
Chun Hua Hu ◽  
Jin Miao Zhang

This document proposed the test scheme of limit Test-bench structural system under the setting-out conditions of simulating critical state and completed the design and manufacture of the test system through conducting investigation on test methods and equipment of tension stringing construction process, combining the 1,250mm2 large cross-section conductor and construction technology requirements and based on functional positioning, optimization of combined design and force analysis of Test-bench, mechanics analysis of various parts and their connection as well as allowable stress method check. This system was closer to the actual stringing working conditions, and the obtained data were more reasonable and exact and meet the actual engineering demand. In addition, the reliability of this test system has been verified through the test of 1,250mm2 third-class large cross-section conductor.


2011 ◽  
Vol 250-253 ◽  
pp. 2057-2067
Author(s):  
Xue Fu Zhang ◽  
Jia Xiang Liu

Because double side drift excavation method named eye excavation method has been a mature and reliable excavation method, it has normally been used in tunnels with super cross-section and super large section area. However, the construction speed using this method is very slow. One of reasons is that the construction technology of this method would be more and complex. The other is that all construction workers, materials, equipment would be extremely difficult for their up and down, and that the ballast rock would have to be moved by artificial when the upper step of the middle guide hole would be excavated. In this paper, to speed up the process of excavating tunnel with super cross-section and super large section area underpass extra-high building, the elastic-plastic numerical simulations for the tunnel named Industry and Trade Station of the third line in Chongqing Rail Transit were made in four excavation methods conditions. The four excavation methods is respectively the double side drift excavation method to the first excavation in main building side, the double side drift excavation method to the first excavation in podium side, the single side drift excavation method in the upper step to the first excavation in main building side and the single side drift excavation method in the upper step to the first excavation in podium side. The main building is named Industry and Trade building with 22 floors. The results showed that the single side drift excavation method in the upper step could Insure the building and tunnel when the support measures were reasonable, that the guide hole beside the little surface load should firstly be excavated by whether double side drift excavation method or single side drift excavation method, and that these would provide a reference for some similar engineering.


2011 ◽  
Vol 94-96 ◽  
pp. 1159-1165 ◽  
Author(s):  
Chong Bang Xu ◽  
Cai Chu Xia ◽  
Hua Lao Wang

Increasing numbers of tunnels adopt super large sections due to the advance of design and construction technology, but the calculation method for the loose loads of such tunnels still follows the traditional method for tunnels constructed by the method of whole face excavation. The calculated loads using such method are always lager than their actual values of super large sections tunnels, and as a result the supports for such tunnels are too conservative which lead to unnecessary construction cost. As said, a new calculation method for the loose loads of multi-arch and extra large cross section tunnels (MELCST) is proposed in this paper considering the characteristics of construction for such tunnels. The method accounts for the influences caused by the multi-step construction procedure and temporary support on tunnels. Compared with old methods, this method is more practical and close to field situation, which provides a new idea for calculating surrounding rock loose loads in MELCST. This new method is demonstrated using Luohanshan tunnel of airport-highway in Fuzhou city, China.


2011 ◽  
Vol 393-395 ◽  
pp. 166-169
Author(s):  
Zhi Min Xiang ◽  
Ren Ai Yuan

studies were carried out to determine the principles of mechanical equipment coordination for large cross-section tunnel construction in combination with the tunnel construction practices within the sections under the charge of China Railway First Group Co., Ltd. on Wuhan-Guangzhou PDL and with a view to optimize the allocation of resources and improve the efficiency of large cross-section tunnel construction. Directed to different procedures such as excavation, support, waterproofing, drainage and lining, the mechanical equipment coordination and operation mode of large cross-section tunnels on the passenger dedicated line were established and the mechanized working faces were formed, which provide experience and reference for the large cross-section tunnel construction of passenger dedicated lines.


2020 ◽  
Vol 2 ◽  
pp. 46-57
Author(s):  
S.V. Maltsev ◽  
◽  
B.P. Kazakov ◽  
A.G. Isaevich ◽  
M.A. Semin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document