Study on Mechanical Behaviors in Friction Stir Welding of 6061-T4 T-Joints

2011 ◽  
Vol 418-420 ◽  
pp. 1092-1096
Author(s):  
Guang Zhou ◽  
Xin Qi Yang ◽  
Xiao Dong Xu

Friction stir welding (FSW) of T-joints composed by 3mm thick 6061-T4 alloy was presented and the influences of process parameters on hardness profiles and tensile strength were discussed specifically. Two low hardness zones on the skin and one low hardness zone on the stringer were found. Tensile behaviors of T-joints were examined in two directions—in skin direction and in stringer direction. It was found that the tensile strength ranged from 170~180MPa for all specimens in the skin direction. And the specimens failed in heat affected zone (HAZ) corresponding to the lowest hardness. In the stringer direction, most fractures occurred in the stringer. In all the cases, the specimens welded exhibited the best tensile strength with ω/v=1541/218 in the stringer direction. The ultimate tensile strength was equal to 83% compared to base material.

Author(s):  
R Palanivel ◽  
RF Laubscher ◽  
S Vigneshwaran ◽  
I Dinaharan

Friction stir welding is a solid-state welding technique for joining metals such as aluminum alloys quickly and reliably. This article presents a design of experiments approach (central composite face–centered factorial design) for predicting and optimizing the process parameters of dissimilar friction stir welded AA6351–AA5083. Three weld parameters that influence weld quality were considered, namely, tool shoulder profile (flat grooved, partial impeller and full impeller), rotational speed and welding speed. Experimental results detailing the variation of the ultimate tensile strength as a function of the friction stir welding process parameters are presented and analyzed. An empirical model that relates the friction stir welding process parameters and the ultimate tensile strength was obtained by utilizing a design of experiments technique. The models developed were validated by an analysis of variance. In general, the full impeller shoulder profile displayed the best mechanical properties when compared to the other profiles. Electron backscatter diffraction maps were used to correlate the metallurgical properties of the dissimilar joints with the joint mechanical properties as obtained experimentally and subsequently modeled. The optimal friction stir welding process parameters, to maximize ultimate tensile strength, are identified and reported.


Author(s):  
Ugrasen Gonchikar ◽  
Holalu Venkatadasu Ravindra ◽  
Prathik Jain Sudhir ◽  
Umeshgowda Bettahally Mahadevegowda ◽  
Shankarnarayan Maskibail Suresh

Abstract Friction Stir Welding (FSW) is a solid state welding which uses non-consumable steel rod to weld two materials. Friction stir welding is an emerging process which is based on frictional heat generated through contact between a non-consumable rotating tool and work piece. Friction stir welding technique possesses several advantages over other conventional types of welding due to the fact that process is carried out in solid state. Removal of melting helps in minimizing porosity and eliminates oxide inclusion. In this study, we focus on the optimization of the process parameters in friction stir welding of two different aluminium alloys (6061, 7075) using Taguchi method of experimental design. Al 6061 and Al 7075 are the two different alloys of aluminium. Among these Al 7075 has mechanical properties nearly double than that of Al 6061, but Al 6061 is used more extensively than Al 7075 because of its low cost. Al 6061 and Al 7075 being alloys of aluminium varies in the composition of alloying elements used in their manufacturing. Al 6061 has magnesium and silicon as its major alloying elements whereas Al 7075 has zinc as its primary alloying element. Al 6061 comes with medium to high strength, exhibit good toughness and surface finish, excellent resistance to corrosion at environmental conditions and another important property is its good weldability. Al 7075 being stronger than Al 6061 lacks in its resistance to corrosion and has poor weldability. Al 6061 is readily weldable but Al 7075 is not, because it is prone to micro-cracking during welding. This study also describes the relation between process parameters and their response of friction stir weld on ultimate tensile strength and hardness of composite materials using mathematical models. The process parameters considered are rotational speed, welding speed and number of passes. Different methodologies are used to develop the models to predict the responses and mechanical properties such as ultimate tensile strength and hardness. The objective of Multiple Regression Analysis (MRA) is to construct a model that explains as much as possible, the variability in a dependent variable, using several independent variables. Group Method of data Handling Technique (GMDH) is a family of inductive algorithms for computer-based mathematical modelling of multi-parametric datasets that features fully automatic structural and parametric optimization of models. GMDH is used in such fields as data mining, knowledge discovery, prediction, complex systems modelling, optimization and pattern recognition. As the machining process is non-linear and time dependent, it is difficult for the traditional identification methods to provide an accurate model. Compared to traditional computing methods, the Artificial Neural Network’s (ANN) are robust and global. Estimation and comparison of machining responses were carried out by MRA, GMDH and ANN.


Author(s):  
Nidhi Sharma ◽  
Zahid A Khan ◽  
Arshad Noor Siddiquee ◽  
Mohd Atif Wahid

Friction stir welding is a new and effective solid-state welding process for joining dissimilar materials such as aluminum (Al) and copper (Cu). Joint quality of the friction stir welded materials gets influenced by the welding strategy and different friction stir welding process parameters, i.e. rotational speed, welding speed, tool design, tool pin offset, and tilt angle. In this paper, the effect of combination of different friction stir welding process parameters during joining of Al-6101 and pure copper is studied using Taguchi L18 orthogonal array. Four friction stir welding process parameters, i.e. shoulder diameter (A), pin offset (B), welding speed (C), and rotational speed (D) each at three levels except shoulder diameter, which is at two levels are selected. The effect of different combinations of these parameters on ultimate tensile strength and micro-hardness of the joints is investigated. Subsequently, single response optimization for ultimate tensile strength and micro-hardness and multi-response optimization of ultimate tensile strength and micro-hardness taken together is carried out to obtain the optimal combination of the friction stir welding process parameters. Taguchi method is used for single response optimization, whereas Taguchi-based TOPSIS method is employed for multi-response optimization. For single optimization, the optimum combination of the friction stir welding parameters yielding maximum strength and micro-hardness are A1B1C2D2 and A2B1C2D3, respectively. The optimum combination of the process parameters for multi-response optimization is A2B1C2D2. From the results of the study for single- and multi-response optimization, it is revealed that the rotational speed is the most significant process parameter affecting the tensile strength and micro-hardness of the joints followed by the welding speed. Further, the macro/microstructure and micro-hardness profile of the joint obtained at the optimal combination of the multi-response optimization are given and discussed for better understanding of material mixing and joining.


2019 ◽  
Vol 969 ◽  
pp. 828-833 ◽  
Author(s):  
R. Nandhini ◽  
R. Dinesh Kumar ◽  
S. Muthukumaran ◽  
S. Kumaran

The friction stir welding of polyamide 66 with a specially modified tool is studied. A variation of the conventional friction stir welding is investigated by incorporating a friction plate for the purpose of heating the polymer in the course of welding process through the tool shoulder. This in turn, improves the efficiency of the weld. The association of the welding process parameters and the weld performance has been investigated by the grey relational analysis with multi response characteristics like weld tensile strength, percent elongation and hardness. Macrostructure of the weld joint cross section has been explored by Stereo microscope. The maximum weld tensile strength of 63 MPa and a Shore hardness of 60 D at the weld nugget are obtained. The hardness profiles of the welded samples have been analyzed in this investigation.


2020 ◽  
Vol 17 (4) ◽  
pp. 491-507 ◽  
Author(s):  
Nitin Panaskar ◽  
Ravi Prakash Terkar

Purpose Recently, several studies have been performed on lap welding of aluminum and copper using friction stir welding (FSW). The formation of intermetallic compounds at the weld interface hampers the weld quality. The use of an intermediate layer of a compatible material during welding reduces the formation of intermetallic compounds. The purpose of this paper is to optimize the FSW process parameters for AA6063-ETP copper weld, using a compatible zinc intermediate filler metal. Design/methodology/approach In the present study, a three-level, three-factor central composite design (CCD) has been used to determine the effect of various process parameters, namely, tool rotational speed, tool traverse speed and thickness of inter-filler zinc foil on ultimate tensile strength of the weld. A total of 60 experimental data were fitted in the CCD. The experiments were performed with tool rotational speeds of 1,000, 1,200 and 1,400 rpm each of them with tool traverse speeds of 5, 10 and 15 mm/min. A zinc inter-filler foil of 0.2 and 0.4 mm was also used. The macrograph of the weld surface under different process parameters and the tensile strength of the weld have been investigated. Findings The feasibility of joining 3 mm thick AA6063-ETP copper using zinc inter-filler is established. The regression analysis showed a good fit of the experimental data to the second-order polynomial model with a coefficient of determination (R2) value of 0.9759 and model F-value of 240.33. A good agreement between the prediction model and experimental findings validates the reliability of the developed model. The tool rotational speed, tool traverse speed and thickness of inter-filler zinc foil significantly affected the tensile strength of the weld. The optimal conditions found for the weld were, rotational speed of 1,212.83 rpm and traverse speed of 9.63 mm/min and zinc foil thickness is 0.157 mm; by using optimized values, ultimate tensile strength of 122.87 MPa was achieved, from the desirability function. Originality/value Aluminium and copper sheets could be joined feasibly using a zinc inter-filler. The maximum tensile strength of joints formed by inter-filler (122.87 MPa) was significantly better as compared to those without using inter-filler (83.78 MPa). The optimum process parameters to achieve maximum tensile strength were found by CCD.


2019 ◽  
Vol 3 (2) ◽  
pp. 38 ◽  
Author(s):  
Ibrahim Sabry ◽  
Ahmed M. El-Kassas ◽  
Abdel-Hamid I. Mourad ◽  
Dinu Thomas Thekkuden ◽  
Jaber Abu Qudeiri

T-welded joints are commonly seen in various industrial assemblies. An effort is made to check the applicability of friction stir welding for producing T-joints made of AA6063-T6 using a developed fixture. Quality T-joints were produced free from any surface defects. The effects of three parameters, such as the speed of rotation of the tool, axial force, and travel speed were analyzed. Correspondingly, mechanical characteristics such as tensile strength, hardness in three zones (thermal heat affected zone, heat affected zone, and nugget zone) and temperature distribution were measured. The full factorial analysis was performed with various combinations of parameters generated using factorial design and responses. Evident changes in the strength, hardness, and temperature profile were noticed for each combination of parameters. The three main parameters were significant in every response with p-values less than 0.05, indicating their importance in the friction stir welding process. Mathematical models developed for investigated responses were satisfactory with high R-sq and least percentage error.


2017 ◽  
Vol 867 ◽  
pp. 97-104 ◽  
Author(s):  
T. Ganapathy ◽  
K. Lenin ◽  
K. Pannerselvam

This paper deals with the effective application of friction stir welding similar to butt joining technique.AL6063 T-6 alloys prepared in 125x 100 x 7mm thickness plate and FSW tool setup were H13 of diameter 25mm rotary tool with straight cylindrical pin profile. The maximum strength was considered for selection of combined process parameter. The process parameters were optimized using Taguchi method. The Rotational speed, welding speed, and axial speed are the main process parameter which taken into our consideration. The optimum process parameters are determined with reference to tensile strength of the joint. From the experiments, it was found the effects of welding parameter are the axial force is highest substantial parameter to determining the tensile strength of the joint. The paper which revealed the optimal values of process parameter are to acquire a maximum tensile strength of friction stir welded AL6063-T6 plates is 101.6Mpa with the combination level of rotational speed, welding speed and axial force are found to be 1100 RPM, 60 mm/min and 12.5 KN. validation test was carried out and results were nearer to the optimized results confirmed by the optimum results.


Sign in / Sign up

Export Citation Format

Share Document