Comparative Study on the Treatment of Biologically Treated Textile Effluent by Nanofiltration and Reverse Osmosis for Water Reuse

2012 ◽  
Vol 441 ◽  
pp. 584-588
Author(s):  
San Chuan Yu ◽  
Zhi Wen Chen ◽  
Mei Hong Liu ◽  
Jing Wei Zhao

In view of the water shortage, the increasingly severe regulations as well as the release thresholds, it is becoming increasingly necessary to reuse the textile effluents. This work concerned the treatment of textile plant effluent after conventional biological processing by membrane technology for water reuse. Desal5 DK nanofiltration (NF) membrane and BW30 reverse osmosis (RO) membrane were investigated in this study in terms of COD and color removal, salinity reduction as well as permeate flux through cross-flow permeation tests. The results showed that the Desal5 DK nanofiltration membrane exhibited higher stabilized water permeability and flux decline than the reverse osmosis membrane because of its higher porosity and tendency towards fouling. The BW30 reverse osmosis membrane reduced salinity to a great extent than the Desal5 DK nanofiltration membrane. While the nanofiltration membrane exhibited better COD removal efficiency compared to the RO membrane, possibly due to its sieving removal mechanism. The treated water with good enough quality could be recycled back into the process, thereby offering economical benefits by reducing the water consumption and wastewater treatment cost.

2018 ◽  
Vol 4 (4) ◽  
pp. 493-504 ◽  
Author(s):  
Haruka Takeuchi ◽  
Hiroaki Tanaka ◽  
Long D. Nghiem ◽  
Takahiro Fujioka

This study proposed a new approach to apply the steric pore-flow model to predict the rejection of eight N-nitrosamines and seven VOCs that are of great concern in potable water reuse through an RO membrane.


Author(s):  
Seungjae Oh ◽  
Semyung Wang ◽  
Minkyu Park ◽  
Joonha Kim

The objective of this study is to design spacers using fluid topology optimization in 2D crossflow Reverse Osmosis (RO) membrane channel to improve the performance of RO processes. This study is an initial attempt to apply topology optimization to designing spacers in RO membrane channel. The performance was evaluated by the quantity of permeate flux penetrating both upper and lower membrane surfaces. A coupled Navier-Stokes and Convection-Diffusion model was employed to calculate the permeate flux. To get reliable solutions, stabilization methods were employed with standard finite element method. The nine reference models which consist of the combination of circle, rectangular, triangle shape and zigzag, cavity, submerge configuration of spacers were simulated. Such models were compared with new model designed by topology optimization. The permeate flux at both membrane surfaces was determined as an objective function. In addition, permissible pressure drop along the channel and spacer volume were used as constraints. As a result of topology optimization as the permissible pressure drop changes in channel, characteristics of spacer design development was founded. Spacer design based on topology optimization was reconstructed to a simple one considering manufactuability and characteristics of development spacer design. When a simplified design was compared with previous 9 models, new design has a better performance in terms of permeate flux and wall concentration at membrane surface.


2014 ◽  
Vol 68 (5) ◽  
Author(s):  
Azry Borhan ◽  
Muhammad Muhibbudin Mat Johari

Monoethanolamine (MEA) has been vastly used for the removal of carbon dioxide (CO2) in natural gas processing plant. However, during the absorption-desorption process and maintenance activities, a small amount of amine get carries over and discharged into the effluent wastewater stream. Due to its high Chemical Oxygen Demand (COD) and require large volume of water for dilution, therefore treatment of MEA contaminated wastewater is a major concern in most amine sweetening plants. In this research, MEA wastewater generated from PETRONAS Fertilizer Kedah Sdn. Bhd (PFK) was treated via AFC99 tubular thin film composite polyamide Reverse Osmosis (RO) membrane. The effect of operating parameter (transmembrane pressure (TMP), feed concentration and pH) towards permeate flux and MEA rejection were studied to obtain the optimum operating conditions. Experimental results showed that AFC99 membrane is able to reject MEA up to 98% when operated at TMP of 20 bars, feed concentration of 300 ppm and pH of 4. This work shows that the RO membrane was feasible and desirable to be used for removal of MEA contaminants from wastewater. Besides, the treated water fulfills the watering standards.


REAKTOR ◽  
2011 ◽  
Vol 11 (2) ◽  
pp. 91 ◽  
Author(s):  
I.N. Widiasa ◽  
I Gede Wenten

An integrated membrane system combining reverse osmosis (RO) and electrodeionization (EDI) is used for simultaneous sugar concentration and salts removal from a synthetic dilute sugar solution as a model of sugar-containing wastewater. The RO system uses a thin film composite RO membrane (Saehan CSM, RE1812-60). Meanwhile, the EDI stack has two diluted compartments, one concentrated compartment, one anode compartment, and one cathode compartment. Commercially available cation exchange membrane (MC-3470) and anion exchange membrane (MA-3475) are used as ionic selective barriers of the EDI stack. Both diluate and concentrate compartments are filled with mixed ion exchange resins (purolite strong acid cation exchange, C-100E and strong base type I anion resins, A-400). Two different operation modes, i.e. RO-EDI and EDI-RO, were assessed. The experimental results show that the observed sugar rejection of RO membrane is more than 99.9% and there is no sugar loss in the EDI stack. This indicates that the hybrid process allows almost total sugar recovery. In addition, significant reduction of salts content from the concentrated sugar solution is obtained. From permeate flux and permeate purity points of view, however, the EDI-RO configuration seems superior to the RO-EDI configuration. It should be emphasized that scale formation on the membrane surface of the concentrate compartment side has to be controlled.


RSC Advances ◽  
2018 ◽  
Vol 8 (73) ◽  
pp. 41938-41949 ◽  
Author(s):  
Huihui Wang ◽  
Yixuan Zhou ◽  
Yao Wang ◽  
Zhi Wang ◽  
Jixiao Wang

The COSG-modified RO membrane with excellent anti-adhesive and antimicrobial properties was successfully fabricated by second interfacial polymerization.


2011 ◽  
Vol 33 (5) ◽  
pp. 379-388 ◽  
Author(s):  
Benjamin D. Stanford ◽  
Aleksey N. Pisarenko ◽  
R. David Holbrook ◽  
Shane A. Snyder

2018 ◽  
Vol 77 (8) ◽  
pp. 1990-1997 ◽  
Author(s):  
Shahzad Jamil ◽  
Sanghyun Jeong ◽  
Saravanamuthu Vigneswaran

Abstract Reverse osmosis concentrate (ROC) from wastewater reclamation plants have high concentrations of organic and inorganic compounds, which have to be removed before its disposal. Forward osmosis (FO) and nanofiltration (NF) membranes were tested to treat the ROC for possible water reuse. This research investigated the combined and individual influence of organic and inorganic matter on the fouling of NF and FO membranes. The results revealed that the NF membrane removed most of the organic compounds and some inorganics. The study further highlighted that the FO membrane at NF mode removed the majority of the inorganic compounds and some organics from the ROC. A pretreatment of granulated activated carbon (GAC) adsorption removed 90% of the organic compounds from ROC. In addition, GAC adsorption and acid pretreatment of ROC improved the net water permeate flux by 17% when an FO membrane was used in the NF system. Acid treatment (by bringing the pH down to 5) helped to remove inorganic ions. Therefore, the resultant permeate can be recycled back to the RO water reclamation plant to improve its efficiency.


2007 ◽  
Vol 56 (8) ◽  
pp. 161-168 ◽  
Author(s):  
A.R.A. Razak ◽  
Z. Ujang ◽  
H. Ozaki

Endocrine disrupting chemicals (EDCs) are the focus of current environmental issues, as they can cause adverse health effects to animals and human, subsequent to endocrine function. The objective of this study was to remove a specific compound of EDCs (i.e. pentachlorophenol, C6OCL5Na, molecular weight of 288 g/mol) using low pressure reverse osmosis membrane (LPROM). A cross flow module of LPROM was used to observe the effects of operating parameters, i.e. pH, operating pressure and temperature. The design of the experiment was based on MINITABTM software, and the analysis of results was conducted by factorial analysis. It was found that the rejection of pentachlorophenol was higher than 80% at a recovery rate of 60 to 70%. The rejection was subjected to increase with the increase of pH. The flux was observed to be increased with the increase of operating pressure and temperature. This study also investigated the interaction effects between operating parameters involved.


Sign in / Sign up

Export Citation Format

Share Document