Effect of Conservation Cultivation on Accumulation and Distribution of Soil Organic Carbon in Paddy Fields Located in Southwest China

2012 ◽  
Vol 442 ◽  
pp. 40-44
Author(s):  
En Ci ◽  
Jie Zhu ◽  
Juan Peng ◽  
Zhuo Wang Fu

A long-term filed experiment was conducted to investigate the influence of ridge-cultivation and no tillage on distribution of soil organic carbon (SOC) in soil profiles of paddy fields located in Southwest China, and determine SOC accumulation characteristics in paddy soil profiles under long-term ridge-cultivation and no tillage. The experiment included four cultivation treatments: conventional tillage with rotation of rice and winter fallow (CT1), conventional tillage with rotation of rice and rape (CT2),ridge-cultivation and no tillage with rotation of rice and winter fallow (NT1), ridge-cultivation and no tillage with rotation of rice and rape (NT2). After the field experiment were conducted for 20 years, the highest and lowest SOC concentrations in different soil layers (0-10 cm, 10-20 cm, 20-40 cm and 40-60 cm) were found in treatments NT2 and CT2, respectively. SOC concentrations in the 0-10 cm and 40-60cm layers had no significantly difference among treatments NT1, NT2 and CT1, and SOC concentration in the 20-40 cm layer was significantly higher in treatment NT2 compared to other treatments (P NT1 > CT1 > CT2, and there was significantly difference among all the treatments (P<0.05). In conclusion, compared to other treatments, treatment NT2 result in more organic carbon accumulated in the 20-40 cm layer, and is a more effective option for SOC sequestration in paddy field.

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 650
Author(s):  
Jesús Aguilera-Huertas ◽  
Beatriz Lozano-García ◽  
Manuel González-Rosado ◽  
Luis Parras-Alcántara

The short- and medium—long-term effects of management and hillside position on soil organic carbon (SOC) changes were studied in a centenary Mediterranean rainfed olive grove. One way to measure these changes is to analyze the soil quality, as it assesses soil degradation degree and attempts to identify management practices for sustainable soil use. In this context, the SOC stratification index (SR-COS) is one of the best indicators of soil quality to assess the degradation degree from SOC content without analyzing other soil properties. The SR-SOC was calculated in soil profiles (horizon-by-horizon) to identify the best soil management practices for sustainable use. The following time periods and soil management combinations were tested: (i) in the medium‒long-term (17 years) from conventional tillage (CT) to no-tillage (NT), (ii) in the short-term (2 years) from CT to no-tillage with cover crops (NT-CC), and (iii) the effect in the short-term (from CT to NT-CC) of different topographic positions along a hillside. The results indicate that the SR-SOC increased with depth for all management practices. The SR-SOC ranged from 1.21 to 1.73 in CT0, from 1.48 to 3.01 in CT1, from 1.15 to 2.48 in CT2, from 1.22 to 2.39 in NT-CC and from 0.98 to 4.16 in NT; therefore, the soil quality from the SR-SOC index was not directly linked to the increase or loss of SOC along the soil profile. This demonstrates the time-variability of SR-SOC and that NT improves soil quality in the long-term.


2011 ◽  
Vol 57 (1) ◽  
pp. 21-30
Author(s):  
Božena Šoltysová ◽  
Martin Danilovič

Tillage in Relation to Distribution of Nutrients and Organic Carbon in the SoilChanges of total nitrogen, available phosphorus, available potassium and soil organic carbon were observed on gleyic Fluvisols (locality Milhostov) at the following crops: grain maize (2005), spring barley (2006), winter wheat (2007), soya (2008), grain maize (2009). The experiment was realized at three soil tillage technologies: conventional tillage, reduced tillage and no-tillage. Soil samples were collected from three depths (0-0.15 m; 0.15-0.30 m; 0.30-0.45 m). The ratio of soil organic carbon to total nitrogen was also calculated.Soil tillage affects significantly the content of total nitrogen in soil. The difference between the convetional tillage and soil protective tillages was significant. The balance showed that the content of total nitrogen decreased at reduced tillage by 5.2 rel.%, at no-tillage by 5.1 rel.% and at conventional tillage by 0.7 rel.%.Similarly, the content of organic matter in the soil was significantly affected by soil tillage. The content of soil organic carbon found at the end of the research period was lower by 4.1 rel.% at reduced tillage, by 4.8 rel.% at no-tillage and by 4.9 rel.% at conventional tillage compared with initial stage. The difference between the convetional tillage and soil protective tillages was significant.Less significant relationship was found between the soil tillage and the content of available phosphorus. The balance showed that the content of available phosphorus was increased at reduced tillage (by 4.1 rel.%) and was decreased at no-tillage (by 9.5 rel.%) and at conventional tillage (by 3.3 rel.%).Tillage did not significantly affect the content of available potassium in the soil.


2008 ◽  
Vol 100 (6) ◽  
pp. 1787-1787 ◽  
Author(s):  
Ademir Calegari ◽  
W. L. Hargrove ◽  
Danilo Dos Santos Rheinheimer ◽  
Ricardo Ralisch ◽  
Daniel Tessier ◽  
...  

2020 ◽  
Author(s):  
Deborah Linsler ◽  
Jacqueline Gerigk ◽  
Ilka Schmoock ◽  
Rainer Georg Jörgensen ◽  
Martin Potthoff

&lt;p&gt;Reduced tillage is assumed to be a suitable practice to maintain and promote microbial biomass and microbial activity in the soil. The microbial biomass in particular is considered as a sensitive indicator for detecting soil disturbances. The objective of this study was to quantify the influence of different tillage practices on microbial parameters in the soil. Furthermore, we analyzed the relation of those microbial parameters with site-specific conditions.&lt;/p&gt;&lt;p&gt;To get a deeper insight in that topic, soils from different fields of agricultural farms with different tillage practices in France (12 fields), Romania (15 fields) and Sweden (17 fields) were examined within the &amp;#8220;SoilMan project&amp;#8221;. The tillage practices were no-tillage (absence of any tillage), minimum tillage (non-inversion tillage for instance by chisel plough or cultivator) and conventional tillage (inversion tillage by ploughing), all of which were carried out for at least five years prior to sampling. Soil samples were taken in spring 2018 from all fields under winter wheat (Triticum aestivum) at three soil depths (0-10 cm, 10-20 cm, 20-30 cm). As microbial parameters we measured microbial biomass carbon and nitrogen contents, ergosterol contents (as proxy for fungi) and basal respiration rates. For site-specific conditions we measured soil organic carbon, total nitrogen and total phosphorus contents, texture, pH and the soil water content.&lt;/p&gt;&lt;p&gt;Results show that microbial biomass carbon and nitrogen were more affected by soil type and soil texture as well as climatic conditions (mean precipitation and temperature) than by tillage practices. For instance, an increased clay content had a positive effect on the microbial biomass and, in addition to the higher average annual temperature, explained the generally low values &amp;#8203;&amp;#8203;in France. The lack of inversion tillage primarily led to stratified levels of soil organic carbon, microbial biomass carbon and ergosterol contents, which can be explained by the lack of crop residue incorporation. There were hardly any differences in microbial indicators between the tillage intensities when looking at the whole of the sampled soil profile (0-30 cm). In France, the microbial biomass carbon / soil organic carbon ratio was lower for no-tillage than for conventional tillage, which may indicate, among other things, that the mechanically ground organic matter incorporated into the soil under conventional tillage was better colonized by microorganisms. However, this effect could not be confirmed in the other countries. The metabolic quotient was generally increased at the lowest sampled depth (20-30 cm), irrespective of the cultivation.&lt;/p&gt;&lt;p&gt;We can conclude that the soil tillage intensity influenced the distribution of microbial biomass carbon and soil organic carbon contents more strongly than the total amounts in the sampled soil profile and that the soil texture had a greater impact on microbial soil properties than the agricultural management practice.&lt;/p&gt;


Geoderma ◽  
2014 ◽  
Vol 213 ◽  
pp. 379-384 ◽  
Author(s):  
Enke Liu ◽  
Saba Ghirmai Teclemariam ◽  
Changrong Yan ◽  
Jianmin Yu ◽  
Runsheng Gu ◽  
...  

2012 ◽  
Vol 40 ◽  
pp. 18-27 ◽  
Author(s):  
Giacomo De Sanctis ◽  
Pier Paolo Roggero ◽  
Giovanna Seddaiu ◽  
Roberto Orsini ◽  
Cheryl H. Porter ◽  
...  

Soil Horizons ◽  
2015 ◽  
Vol 56 (6) ◽  
pp. 0 ◽  
Author(s):  
Patrick M. Carr ◽  
Eric C. Brevik ◽  
Richard D. Horsley ◽  
Glenn B. Martin

Sign in / Sign up

Export Citation Format

Share Document