Long-term effects of no-tillage management practice on soil organic carbon and its fractions in the northern China

Geoderma ◽  
2014 ◽  
Vol 213 ◽  
pp. 379-384 ◽  
Author(s):  
Enke Liu ◽  
Saba Ghirmai Teclemariam ◽  
Changrong Yan ◽  
Jianmin Yu ◽  
Runsheng Gu ◽  
...  
Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 650
Author(s):  
Jesús Aguilera-Huertas ◽  
Beatriz Lozano-García ◽  
Manuel González-Rosado ◽  
Luis Parras-Alcántara

The short- and medium—long-term effects of management and hillside position on soil organic carbon (SOC) changes were studied in a centenary Mediterranean rainfed olive grove. One way to measure these changes is to analyze the soil quality, as it assesses soil degradation degree and attempts to identify management practices for sustainable soil use. In this context, the SOC stratification index (SR-COS) is one of the best indicators of soil quality to assess the degradation degree from SOC content without analyzing other soil properties. The SR-SOC was calculated in soil profiles (horizon-by-horizon) to identify the best soil management practices for sustainable use. The following time periods and soil management combinations were tested: (i) in the medium‒long-term (17 years) from conventional tillage (CT) to no-tillage (NT), (ii) in the short-term (2 years) from CT to no-tillage with cover crops (NT-CC), and (iii) the effect in the short-term (from CT to NT-CC) of different topographic positions along a hillside. The results indicate that the SR-SOC increased with depth for all management practices. The SR-SOC ranged from 1.21 to 1.73 in CT0, from 1.48 to 3.01 in CT1, from 1.15 to 2.48 in CT2, from 1.22 to 2.39 in NT-CC and from 0.98 to 4.16 in NT; therefore, the soil quality from the SR-SOC index was not directly linked to the increase or loss of SOC along the soil profile. This demonstrates the time-variability of SR-SOC and that NT improves soil quality in the long-term.


2008 ◽  
Vol 100 (6) ◽  
pp. 1787-1787 ◽  
Author(s):  
Ademir Calegari ◽  
W. L. Hargrove ◽  
Danilo Dos Santos Rheinheimer ◽  
Ricardo Ralisch ◽  
Daniel Tessier ◽  
...  

2018 ◽  
Vol 619-620 ◽  
pp. 18-27 ◽  
Author(s):  
Giuseppe Badagliacca ◽  
Emilio Benítez ◽  
Gaetano Amato ◽  
Luigi Badalucco ◽  
Dario Giambalvo ◽  
...  

2009 ◽  
Vol 6 (4) ◽  
pp. 6539-6577 ◽  
Author(s):  
W. J. Zhang ◽  
X. J. Wang ◽  
M. G. Xu ◽  
S. M. Huang ◽  
H. Liu ◽  
...  

Abstract. Soil organic carbon (SOC) data were collected from six long-term experiment sites in the upland of northern China. Various fertilization (e.g. inorganic fertilizations and combined inorganic-manure applications) and cropping (e.g. mono- and double-cropping) practices have been applied at these sites. Our analyses indicate that long-term applications of inorganic nitrogen-phosphorus (NP) and nitrogen-phosphorus-potassium (NPK) result in a significant increase in SOC at the sites with the double-cropping systems. The applications of inorganic NP and/or NPK combined with manure lead to a significantly increasing trend in SOC content at all the sites. However, the application of NPK with crop residue incorporation can only increase SOC content in the warm-temperate areas with the double-cropping systems. Regression analyses suggest that soil carbon sequestration responds linearly to carbon input at all the sites. Conversion rates of carbon input to SOC decrease significantly with an increase of annual accumulative temperature or precipitation, showing lower rates (6.8%–7.7%) in the warm-temperate areas than in the mid-temperate areas (15.8%–31.0%).


Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 691
Author(s):  
Xudong Wang ◽  
Cong He ◽  
Bingyang Liu ◽  
Xin Zhao ◽  
Yang Liu ◽  
...  

Crop residue returning (RR) is a promising option to increase soil organic carbon (SOC) storage, which is linked to crop yield promotion, ecologically sustainable agriculture, and climate change mitigation. Thus, the objectives of this study were to identify the responses of SOC storage and sequestration rates to RR in China’s croplands. Based on a national meta-analysis of 365 comparisons from 99 publications, the results indicated that RR increased SOC storage by 11.3% compared to residue removal (p < 0.05). Theoretically, when combined with low nitrogen fertilizer input rates (0–120 kg N ha−1), single cropping system, paddy-upland rotation, lower mean annual precipitation (0–500 mm), alkaline soils (pH 7.5–8.5), other methods of RR (including residue chopping, evenly incorporating, and burying) or long-term use (>10 yrs), an increase in SOC storage under RR by 11.6–15.5% could be obtained. The SOC sequestration rate of RR varied from 0.48 (Central China) to 1.61 (Southwest China) Mg C ha−1 yr−1, with a national average value of 0.93 Mg C ha−1 yr−1. Higher SOC sequestration rates enhanced crop production. However, decreases in SOC sequestration rate were observed with increases in experimental durations. The phenomenon of “C saturation” occurred after 23 yrs of RR. Overall, RR can be used as an efficient and environmentally friendly and climate-smart management practice for long-term use.


2012 ◽  
Vol 40 ◽  
pp. 18-27 ◽  
Author(s):  
Giacomo De Sanctis ◽  
Pier Paolo Roggero ◽  
Giovanna Seddaiu ◽  
Roberto Orsini ◽  
Cheryl H. Porter ◽  
...  

Soil Horizons ◽  
2015 ◽  
Vol 56 (6) ◽  
pp. 0 ◽  
Author(s):  
Patrick M. Carr ◽  
Eric C. Brevik ◽  
Richard D. Horsley ◽  
Glenn B. Martin

2003 ◽  
Vol 32 (5) ◽  
pp. 1694-1700 ◽  
Author(s):  
Y. L. Qian ◽  
W. Bandaranayake ◽  
W. J. Parton ◽  
B. Mecham ◽  
M. A. Harivandi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document