High Velocity Impact Behaviour of Hybrid-Fiber Engineered Cementitious Composite Panels

2012 ◽  
Vol 450-451 ◽  
pp. 563-567 ◽  
Author(s):  
Joel Bell ◽  
Yi Xia Zhang ◽  
Khin Soe ◽  
Phillip Hermes

High-velocity impact behaviour of hybrid-fibre engineered cementitious composite (ECC) panels subjected to an impact from a hardened steel, ogive-nosed projectile at velocities between 300-700 m/s is investigated and reported in this paper. The new ECC mix contains a proportion of 0.75% volume high-modulus steel fibres and 1.25% volume low modulus polyvinyl-alcohol (PVA) fibres. The mix is designed to achieve a desired balance between the strain hardening behaviour and impact resistance of material required for impact and blast resistant structures. The new hybrid-fibre ECC demonstrates its excellent capability for impact resistance and strong potential as a protective material with reduced impact damage and distributed micro cracking.

2017 ◽  
Vol 21 (4) ◽  
pp. 589-597 ◽  
Author(s):  
YX Zhang ◽  
Zachary Kerr ◽  
Brian Jarvis ◽  
Rhys J Volant

In this article, a new engineered cementitious composite reinforced with 0.6% volume steel fibres and 1.5% volume polyvinyl-alcohol fibres is developed aiming for enhanced impact resistance compared to other construction materials. Fundamental mechanical properties of the new composite including the compressive strength, Young’s modulus, tensile strength and flexural behaviour were tested. To calibrate the impact resistance of the new composite, high-velocity impact tests of panels made of the new material were conducted when subjected to impact from a standard 7.62 mm round in-service bullet fired from a knight armament SR-25 military rifle. For comparison, plain concrete panels and concrete panels reinforced with 2% volume steel fibres were also tested. The post-impact responses of the panels in terms of crater sizes, damage failure mode, fragmentation size, weight and regress velocity are analysed and compared to characterize the impact resistance of the new engineered cementitious composite. The test results demonstrate significantly enhanced impact and shatter resistance of the new hybrid fibre-reinforced cementitious composite with reduced spalling and fragmentation, localized damage areas and improved cracking resistance.


2011 ◽  
Vol 399-401 ◽  
pp. 2318-2328 ◽  
Author(s):  
Mohamed Thariq Hameed Sultan ◽  
Shahnor Basri ◽  
Azmin Shakrine Mohd Rafie ◽  
Faizal Mustapha ◽  
Dayang Laila Majid ◽  
...  

The ultimate objective of the current work is to examine the effect of thickness on fiberglass reinforced epoxy matrix subjected to high velocity impact loading. The composite material chosen for this research was from type C-glass/epoxy 200 g/m2and type C-glass/epoxy 600 g/m2. This material is used as a composite reinforcement in high performance applications since it provides certain advantages of specific high strength and stiffness as compared to metallic materials. This study investigates the mechanical properties, damage characterisation and impact resistance of both composite structures, subjected to the changes of impact velocity and thickness. For mechanical properties testing, the Universal Testing Machine (UTM) was used while for the high velocity impact, a compressed gas gun equipped with a velocity measurement system was used. From the results, it is found that the mechanical properties, damage characterisation and impact resistance of type C-glass/Epoxy 600 g/m2posses better toughness, modulus and penetration compared to type C-glass/Epoxy 200 g/m2. A general trend was observed on the overall ballistic test results which indicated that as the plate specimen thickness continues to increase, the damage at the lower skin decreases and could not be seen. Moreover, it is also found that, as the plate thickness increases, the maximum impact load and impact energy increases relatively. Impact damage was found to be in the form of perforation, fibre breakage and matrix cracking. Results from this research can be used as a reference in designing structural and body armour applications in developing a better understanding of test methods used to characterise impact behaviour.


2018 ◽  
Vol 53 (4) ◽  
pp. 535-546 ◽  
Author(s):  
M Altaf ◽  
S Singh ◽  
VV Bhanu Prasad ◽  
Manish Patel

The compressive strength of C/SiC composite at different strain rates, off-axis orientations and after high-velocity impact was studied. The compressive strength was found to be 137 ± 23, 130 ± 46 and 162 ± 33 MPa at a strain rate of 3.3 × 10−5, 3.3 × 10−3, 3.3 × 10−3 s−1, respectively. On the other hand, the compressive strength was found to be 130 ± 46, 99 ± 23 and 87 ± 9 MPa for 0°/90°, 30°/60° and 45°/45° fibre orientations to loading direction, respectively. After high-velocity impact, the residual compressive strength of C/SiC composite was found to be 58 ± 26, 44 ± 18 and 36 ± 3.5 MPa after impact with 100, 150 and 190 m/s, respectively. The formation of kink bands in fibre bundles was found to be dominant micro-mechanism for compressive failure of C/SiC composite for 0°/90° orientation. On the other hand, delamination and the fibre bundles rotation were found to be the dominant mechanism for off-axis failure of composite.


2001 ◽  
Author(s):  
Wesley J. Cantwell ◽  
Graham Wade ◽  
J. Fernando Guillen ◽  
German Reyes-Villanueva ◽  
Norman Jones ◽  
...  

Abstract The impact resistance of a range of novel fiber metal laminates based on polypropylene, polyamide and polyetherimide matrices has been investigated. Initial attention focused on optimizing the interface between the composite and aluminum alloy constituents. Here, it was shown that composite-metal adhesion was excellent in all systems examined. In addition, tests at crosshead displacement rates up to 3 m/s indicated that the interfacial fracture energies remained high under dynamic loading conditions. High velocity impact tests on a series of 3/2 laminates (3 layers of aluminum/2 layers of composite) highlighted the outstanding impact resistance of a number of these systems. The glass fiber reinforced polypropylene system offered a particularly high impact resistance exhibiting a perforation energy of approximately 160 Joules. Here, failure mechanisms such as extensive plastic drawing in the aluminum layers and fiber fracture in the composite plies were found to contribute to the excellent energy-absorbing characteristics of these systems.


2020 ◽  
Vol 248 ◽  
pp. 112520 ◽  
Author(s):  
I. Ivañez ◽  
S. Sánchez-Saez ◽  
S.K. Garcia-Castillo ◽  
E. Barbero ◽  
A. Amaro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document