The Hot Deformation Behavior and Microstructural Evolution of Ti-6Al-2Zr-3Ni Alloy

2012 ◽  
Vol 452-453 ◽  
pp. 61-65
Author(s):  
Xuan Xiao ◽  
Hui Xu ◽  
Li Yuan Sheng ◽  
Lan Zhang Zhou

Hot compression deformation behavior of Ti-6Al-2Zr-3Ni alloy was investigated through thermal simulation tests in the range of 900- 1050°C, with strain rate from 0.001 s-1 to 1 s-1. The results demonstrates that flow stress reaches the maximum quickily, followed by flow softening with the increase of strain in all true stress-strain curves. At a constant strain rate, flow stress will decrease with the test temperature. Moreover, the temperature sensitivity of flow stress reduces largely at temperature between 980 to 1050°C, during which dynamic recovery is the main mechanism for the hot deformed alloy. In addition, flow stress increases with the strain rate. At lower temperature, recrystallization reduces or vanishes at temperature ranging from 900 to 940 °C due to thermodynamics factors.

2016 ◽  
Vol 849 ◽  
pp. 309-316 ◽  
Author(s):  
Li Wei Zhu ◽  
Xin Nan Wang ◽  
Yue Fei ◽  
Jing Li ◽  
Zhi Shou Zhu

The hot deformation behavior of Ti-4.5Al-3V-2Mo-2Fe (SP-700) titanium alloy in the temperature range of 650°C~950°C and constant strain rate of 0.01, 0.1, 1 and 10s-1 has been investigated by hot compressive testing on the Gleeble-1500D thermal simulation test machine. The experimental results indicated that the hot deformation behavior of SP-700 alloy was sensitive to the deformation temperature and strain rate. The peak flow stress decreased with the increase of temperature and the decrease of strain rate. The flow curves characteristic under different deformation parameters show significant different. Analysis of the flow stress dependence on strain rate and temperature gives a stress exponent of n as 4.8235 and a deformation activation energy of Q as 410kJ/mol. Based on the dynamic materials model, the processing map is generated, which shows that the most peak efficiency domain appears at the temperature of 725°C~775°C and the strain rate of 0.001 s-1~0.003s-1 with a peak efficiency of 45% at about 750°C/0.01s-1.


2011 ◽  
Vol 314-316 ◽  
pp. 2560-2564 ◽  
Author(s):  
Hui Ping Qi ◽  
Yong Tang Li ◽  
Jia Fu ◽  
Zhi Qi Liu

The purpose of this study is to find the hot deformation behavior of as-cast 42CrMo steel. The thermal simulation experiments of as-cast 42CrMo steel were done on the Gleeble-1500 thermo-mechanical simulation machine. The hot deformation behavior of as-cast 42CrMo steel was analyzed. The true stress-strain curves in hot deformation at different deformation temperature (850°C,950°C,1050°C,1150°C), different strain rate (0.05S-1, 0.5 S-1, 1 S-1,5 S-1) were obtained. The influence rules of the deformation temperature and strain rate on the curves were analyzed. The analysis shows that the true stress increases with increase of deformation temperature and decrease of stain rate. The hot deformation behavior of as-cast 42CrMo steel was compared with forged 42CrMo steel. The results show that the flow stress of as-cast 42CrMo steel during hot deformation was higher than that of the forged 42CrMo steel. Compared to the forged 42CrMo steel, the dynamic recrystallization in as-cast 42CrMo steel during hot deformation is more difficult to occur. The above conclusions have significant theoretical and practical meanings for the design of hot deformation process of as-cast 42CrMo steel.


2013 ◽  
Vol 709 ◽  
pp. 143-147 ◽  
Author(s):  
Tao Wang ◽  
Zhao Li ◽  
Shu Hong Fu ◽  
Yong Zhang ◽  
Yu Xin Zhao ◽  
...  

The hot deformation behavior of U720Li was investigated by isothermal compression tests at temperature ranging from 1060-1180°C and strain rate from 0.001s-1 to 20s-1. The flow stress-strain curves and microstructures were investigated and a constitutive equation was established. It is found that flow stress is sensitive to stain rate and deformation temperature greatly. The higher stain rate resultes in a larger fluctuation in flow stress. The hot deformation activation energy is determined to be 552.8kJ/mol. Grain size increases with increasing temperature and decreases firstly and then increases with increasing strain rate. U720Li alloy should be deformed below the solve temperature of γ primary phase with lower strain rate in order to obtain the even and fine grain size.


2013 ◽  
Vol 17 (5) ◽  
pp. 1523-1528
Author(s):  
Bao-Hua Jia ◽  
Wei-Dong Song ◽  
Hui-Ping Tang ◽  
Jian-Guo Ning

Isothermal compression tests of TC18 titanium alloy at the deformation temperatures ranging from 25?C to 800?C and strain rate ranging from 10-4 to 10-2 s-1 were conducted by using a WDW-300 electronic universal testing machine. The hot deformation behavior of TC18 was characterized based on an analysis of the true stress-true strain curves of TC18 titanium alloy. The curves show that the flow stress increases with increasing the strain rate and decreases with increasing the temperature, and the strain rate play an important role in the flow stress when increasing the temperatures. By taking the effect of strain into account, an improved constitutive relationship was proposed based on the Arrhenius equation. By comparison with the experimental results, the model prediction agreed well with the experimental data, which demonstrated the established constitutive relationship was reliable and can be used to predict the hot deformation behavior of TC18 titanium alloy.


2016 ◽  
Vol 684 ◽  
pp. 35-41 ◽  
Author(s):  
S.V. Rushchits ◽  
E.V. Aryshensky ◽  
S.M. Sosedkov ◽  
A.M. Akhmed'yanov

The deformation behavior of 1565ch alloy under the plane-strain conditions in the temperature range of 350–490 оС and strain rates range of 0,1–10 s-1 is studied. The expression for steady flow stress as the functions of temperature of deformation and strain rate is obtained. It is established that 1565ch alloy with zirconium addition shows higher strain resistance and less tendency to dynamic and static recrystallization than AMg6.


Author(s):  
Mei-ling Li ◽  
Wen-jin Gao ◽  
Ying-hao Zhou

Abstract The 60NiTi (Ni60wt%–Ti40wt%) intermetallic is a hard-to-process material. Understanding of hot deformation behavior is crucial for the hot working of 60NiTi. This work studied hot deformation behavior and corresponding microstructure of the hot isostatic pressed 60NiTi in the temperature range of 900 °C–1050 °C and at strain rates of 0.1, 0.01, and 0.001 s-1 through a hot compression test. The flow stress and microstructure were susceptible to the hot deformation parameters. The flow stress decreased with the increase in deformation temperature and decrease in strain rate. Work hardening occurred at a small strain, then followed by softening; finally, near-dynamic equilibrium was achieved between work hardening and softening. A constitutive equation was developed to describe the effects of strain rate and temperature on flow stress. Simulation of hot deformation via the finite element method revealed the workpiece’s inhomogeneous deformation. The deformation occurred mainly in the center area of the cylindrical sample, resulting in high stress and strain concentrations in this region and causing the equiaxial grains to be compressed into prolate grains. This work can provide guidance for the hot working, such as forging and hot rolling, of 60NiTi.


2021 ◽  
Vol 1035 ◽  
pp. 328-333
Author(s):  
Li Wei Zhu ◽  
Zhi Shou Zhu ◽  
Xin Nan Wang

The hot deformation behavior of Ti-Al-Nb-Zr-Mo-Cr titanium alloy has been investigated using a Gleeble-1500D thermal simulation test machine in the temperature range of 855°C~1015°C,at constant strain rate from 0.01 s-1 to 10s-1 and with height reduction of 45%. The flow curves characteristic under different deformation parameters show significant difference. According to the stress-strain curves of the alloy and its stress characteristics, the Arrhenius constitutive equation was obtained. The average activation energy is about 541 kJ/mol in the α+β field, and about 243 kJ/mol in the β field, respectively. Based on the dynamic materials model, the processing map is generated, which shows that the peak efficiency domain appears at the temperature of 874°C~900°C and the strain rate of 0.001 s-1~0.06s-1 with a peak efficiency of 0.58 at about 887°C/0.001s-1.


2013 ◽  
Vol 747-748 ◽  
pp. 703-708 ◽  
Author(s):  
Tao Wang ◽  
Shu Hong Fu ◽  
Zhao Li ◽  
Yong Zhang ◽  
Yu Xin Zhao ◽  
...  

Hot compressive deformation of Udimet720Li alloy was carried out on Gleeble-3500 thermal mechanical simulator. The flow stress behavior of Udimet720Li alloy during hot compression was studied in the temperature range of 1100-1160 and at a strain rate of 0.001-1s -1. The results showed that the flow stress was controlled by both strain rate and deforming temperature. The flow stress decreased with the increase of deforming temperature, while increased with the increase of strain rate. The change of flow stress with deformation thermal parameters was revealed from true stress-true strain curves, and constitutive relationship of Udimet720Li alloy was obtained on the base of Arrhenius equations and the deformation activation energy was calculated.


2011 ◽  
Vol 695 ◽  
pp. 361-364 ◽  
Author(s):  
Ying Han ◽  
Guan Jun Qiao ◽  
Dong Na Yan ◽  
De Ning Zou

The hot deformation behavior of super 13Cr martensitic stainless steel was investigated using artificial neural network (ANN). Hot compression tests were carried out at the temperature range of 950°C to 1200°C and strain rate range of 0.1–50s–1at an interval of an order of magnitude. Based on the limited experimental data, the ANN model for the constitutive relationship existed between flow stress and strain, strain rate and deformation temperature was developed by back-propagation (BP) neural network method. A three layer structured network with one hidden layer and ten hidden neurons was trained and the normalization method was employed in training for avoiding over fitting. Modeling results show that the developed ANN model can efficiently predict the flow stress of the steel and reflect the hot deformation behavior in the whole deforming process.


Sign in / Sign up

Export Citation Format

Share Document