TiO2 Nanowires/Nanobelts Originating from Anodically Grown Nanotube Arrays

2012 ◽  
Vol 463-464 ◽  
pp. 802-807 ◽  
Author(s):  
Hai Jun Tao ◽  
Jie Tao ◽  
Tao Wang ◽  
Zuo Guo Bao

TiO2nanotube arrays have aroused great interest because of their enormous application in areas such as gas sensor, catalysts, biological materials, and solar cells. In this report, TiO2nanowires/nanobelts originating from TiO2 nanotube arrays are fabricated by simple anodization of Ti foils in ethylene glycol (EG) containing 0.25wt% NH4F. From the field emission scanning electron microscopy (FE-SEM) it is observed that the morphology of the special structure is influenced by anodization voltage, water content and anodization time. In these factors, small amount of water plays a very important role in making the special nanostructure. Moreover, a possible mechanism that showed a relationship between the formation of the special structure and electric field directed chemical etch is proposed.

2011 ◽  
Vol 694 ◽  
pp. 838-841
Author(s):  
Xue Mei Cui ◽  
Gui Fu Ding ◽  
Yan Wang ◽  
Wen Jing Lu ◽  
Hui Shen

We propose a novel preparation technology of CNTs modified electrode. CNTs are mixed with polymer into homogenate by mechanical ball grinder; spin homogenate into composite film; solidify and polish composite film; chemical etch polymer partly from the surface of the composite film, in order to keep part of the CNTs be inserted in polyimide and the remainder outside of film, then CNTs modified electrode can be got. The morphologies of CNTs modified electrode are observed by field emission scanning electron microscopy (FESEM). The application of CNTs modified electrode in alum solution battery is demonstrated. Cyclic voltammetry of CNTs modified electrodes in V4+ solution is discussed.


2011 ◽  
Vol 219-220 ◽  
pp. 1541-1544
Author(s):  
Shi Kai Liu ◽  
Hong Sen Zuo ◽  
Hai Bin Yang ◽  
Wen Jun Zou ◽  
Zheng Xin Li

Highly ordered nanotube arrays were fabricated via electrochemical anodization of Ti-6Al-4V (TC4) alloy foils in aqueous fluorine containing electrolytes. The formation of ordered nanotubular films was affected by the applied anodization potential and the anodization time. The optimal applied voltage and anodization time were 20V and 1h, respectively, as-prepared anodic nanotubular films were in highly ordered with the average inner diameter of about 120nm, the wall thickness of 17nm and the tube length about 300nm. The tubular nanostructures were examined by field emission scanning electron microscopy. The possible nanotube formation mechanism was also discussed.


2010 ◽  
Vol 148-149 ◽  
pp. 873-876
Author(s):  
Jian Ling Zhao ◽  
Ying Ru Kang ◽  
Xi Xin Wang ◽  
Cheng Chun Tang

Titania nanotube arrays were synthesized via anodic oxidization of titanium foil in dimethyl sulfoxide (DMSO) solution containing 2 wt% HF and 3 wt% H2O at 40 V. The microstructure of the arrays was characterized with scanning electron microscopy (SEM). The results show that morphology of titania nanotube arrays is evidently influenced by the anodization time, and with the extension of oxidation time, the better morphology could be obtained. The possible formation mechanism of titania nanotube arrays has been discussed.


2013 ◽  
Vol 302 ◽  
pp. 31-34 ◽  
Author(s):  
Rui Liu ◽  
Liang Sheng Qiang ◽  
Wein Duo Yang ◽  
Hsin Yi Liu

Highly-ordered TiO2 nanotube arrays were successfully fabricated by electrochemical anodization of titanium. The morphology of TiO2 nanotube arrays, the length and pore size were represented by field emission scanning electron microscopy (FE-SEM). The parameters of various anodization including F- concentration, reaction temperature and anodization voltage were investigated in detail. The results show that as-prepared TiO2 nanotube arrays possess good uniformity and well-aligned morphology in mixture of ethylene glycol and 0.3 wt% NH4F electrolyte at 40 V for 25 °C. The growth rates of TiO2 nanotube arrays can show activation energy.


Author(s):  
Yasushi Kokubo ◽  
Hirotami Koike ◽  
Teruo Someya

One of the advantages of scanning electron microscopy is the capability for processing the image contrast, i.e., the image processing technique. Crewe et al were the first to apply this technique to a field emission scanning microscope and show images of individual atoms. They obtained a contrast which depended exclusively on the atomic numbers of specimen elements (Zcontrast), by displaying the images treated with the intensity ratio of elastically scattered to inelastically scattered electrons. The elastic scattering electrons were extracted by a solid detector and inelastic scattering electrons by an energy analyzer. We noted, however, that there is a possibility of the same contrast being obtained only by using an annular-type solid detector consisting of multiple concentric detector elements.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Buzuayehu Abebe ◽  
Enyew Amare Zereffa ◽  
Aschalew Tadesse ◽  
H. C. Ananda Murthy

Abstract Metal oxide nanomaterials are one of the preferences as antibacterial active materials. Due to its distinctive electronic configuration and suitable properties, ZnO is one of the novel antibacterial active materials. Nowadays, researchers are making a serious effort to improve the antibacterial activities of ZnO by forming a composite with the same/different bandgap semiconductor materials and doping of ions. Applying capping agents such as polymers and plant extract that control the morphology and size of the nanomaterials and optimizing different conditions also enhance the antibacterial activity. Forming a nanocomposite and doping reduces the electron/hole recombination, increases the surface area to volume ratio, and also improves the stability towards dissolution and corrosion. The release of antimicrobial ions, electrostatic interaction, reactive oxygen species (ROS) generations are the crucial antibacterial activity mechanism. This review also presents a detailed discussion of the antibacterial activity improvement of ZnO by forming a composite, doping, and optimizing different conditions. The morphological analysis using scanning electron microscopy, field emission-scanning electron microscopy, field-emission transmission electron microscopy, fluorescence microscopy, and confocal microscopy can confirm the antibacterial activity and also supports for developing a satisfactory mechanism. Graphical abstract Graphical abstract showing the metal oxides antibacterial mechanism and the fluorescence and scanning electron microscopic images.


Sign in / Sign up

Export Citation Format

Share Document