Stability of Turning Process with a Continuous Delay Model

2012 ◽  
Vol 500 ◽  
pp. 20-25 ◽  
Author(s):  
Qing Hua Song ◽  
Xing Ai ◽  
Bing Guo

An alternative physical explanation for process damping where a distributed cutting force model, along with a function distribution over the tool-chip interface, is assumed, is described. An exponential shape function is used to approximate the force distribution on the tool-chip interface. The distributed force model results in a more complicated governing equation, a second-order delayed integrodifferential equation, which involves both a discrete and distributed delay. An approach to transform and normalize the governing equation of motion into a third-order discrete system is described and the state-space representation of the new system is obtained. The semi-discretization method is then used to chart the stability boundaries for turning operation.

Author(s):  
Firas A. Khasawneh ◽  
Brian P. Mann ◽  
Tama´s Insperger ◽  
Gabor Ste´pa´n

This paper investigates the analysis of delay integro-differential equations to explain the increased stability behavior commonly observed at low cutting speeds in machining processes. In the past, this improved stability has been attributed to the energy dissipation from the interference between the workpiece and the tool relief face. In this study, an alternative physical explanation is described. In contrast to the conventional approach, which uses a point force acting at the tool tip, the cutting forces are distributed over the tool-chip interface. This approximation results in a second order delayed integro-differential equation for the system that involves a short and a discrete delay. A method for determining the stability of the system for an exponential shape function is described, and temporal finite element analysis is used to chart the stability regions. Comparisons are then made between the stability charts that use the conventional point force and those that use the distributed force model for continuous and interrupted turning.


2017 ◽  
Vol 11 (6) ◽  
pp. 958-963
Author(s):  
Koji Teramoto ◽  
◽  
Takahiro Kunishima ◽  
Hiroki Matsumoto

Elastomer end-milling is attracting attention for its role in the small-lot production of elastomeric parts. In order to apply end-milling to the production of elastomeric parts, it is important that the workpiece be held stably to avoid deformation. To evaluate the stability of workholding, it is necessary to predict cutting forces in elastomer end-milling. Cutting force prediction for metal workpiece end-milling has been investigated for many years, and many process models for end-milling have been proposed. However, the applicability of these models to elastomer end-milling has not been discussed. In this paper, the characteristics of the cutting force in elastomer end-milling are evaluated experimentally. A standard cutting force model and its parameter identification method are introduced. By using this cutting force model, measured cutting forces are compared against the calculated results. The comparison makes it clear that the standard cutting force model for metal end-milling can be applied to down milling for a rough evaluation.


Author(s):  
Tamás G. Molnár ◽  
Tamás Insperger ◽  
S. John Hogan ◽  
Gábor Stépán

Regenerative machine tool chatter is investigated for a single-degree-of-freedom model of turning processes. The cutting force is modeled as the resultant of a force system distributed along the rake face of the tool, whose magnitude is a nonlinear function of the chip thickness. Thus, the process is described by a nonlinear delay-differential equation, where a short distributed delay is superimposed on the regenerative point delay. The corresponding stability lobe diagrams are computed and are shown numerically that a subcritical Hopf bifurcation occurs along the stability boundaries for realistic cutting-force distributions. Therefore, a bistable region exists near the stability boundaries, where large-amplitude vibrations (chatter) may arise for large perturbations. Analytical formulas are obtained to estimate the size of the bistable region based on center manifold reduction and normal form calculations for the governing distributed-delay equation. The locally and globally stable parameter regions are computed numerically as well using the continuation algorithm implemented in dde-biftool. The results can be considered as an extension of the bifurcation analysis of machining operations with point delay.


Author(s):  
Alex Elías-Zúñiga ◽  
Jovanny Pacheco-Bolívar ◽  
Francisco Araya ◽  
Alejandro Martínez-López ◽  
Oscar Martínez-Romero ◽  
...  

The aim of this paper is to obtain the stability lobes for milling operations with a nonlinear cutting force model. The work is focused on the generation of stability lobes based on a formulation with Chebyshev polynomials and the semidiscretization method, considering a nonlinear cutting force model. Comparisons were conducted between experimental data at 5% radial immersion with aluminum workpiece and predictions based on Chebyshev and semidiscretization. In all cases, the use of nonlinear cutting force model provides better prediction of process stability conditions.


Author(s):  
Z. C. Wang ◽  
W. L. Cleghorn ◽  
S. D. Yu

Abstract In this paper, the stability analysis of turning process is performed based on a new cutting force model which includes the effect of ploughing force. This approach utilized the Laplace transform to identify the characteristic roots of the examined machining system. The stability of the machining system can then be determined by examining the locations of the characteristic roots. The stability curve for a specific turning process can then be plotted. The effect of different cutting force models on the stability is also investigated. The results clearly demonstrate some chatter phenomena observed by other researchers.


2005 ◽  
Vol 14 (06) ◽  
pp. 967-974 ◽  
Author(s):  
CHEN-YUAN CHEN ◽  
JOHN RONG-CHUNG HSU ◽  
CHENG-WU CHEN

This paper extends the Takagi-Sugeno (T-S) fuzzy model representation to analyze the stability of interconnected systems in which there exist time delays in subsystems. A novel stability criterion which can be solved numerically is presented in terms of Lyapunov's theory for fuzzy interconnected models. In this paper, we use linear difference inclusion (LDI) state-space representation to represent the fuzzy model. Then, the linear matrix inequality (LMI) optimization algorithm is employed to find common solution and then guarantee the asymptotic stability.


2006 ◽  
Vol 2 (2) ◽  
pp. 167-179 ◽  
Author(s):  
R. P. H. Faassen ◽  
N. van de Wouw ◽  
H. Nijmeijer ◽  
J. A. J. Oosterling

The efficiency of the high-speed milling process is often limited by the occurrence of chatter. In order to predict the occurrence of chatter, accurate models are necessary. In most models regarding milling, the cutter is assumed to follow a circular tooth path. However, the real tool path is trochoidal in the ideal case, i.e., without vibrations of the tool. Therefore, models using a circular tool path lead to errors, especially when the cutting angle is close to 0 or π radians. An updated model for the milling process is presented which features a model of the undeformed chip thickness and a time-periodic delay. In combination with this tool path model, a nonlinear cutting force model is used, to include the dependency of the chatter boundary on the feed rate. The stability of the milling system, and hence the occurrence of chatter, is investigated using both the traditional and the trochoidal model by means of the semi-discretization method. Due to the combination of this updated tool path model with a nonlinear cutting force model, the periodic solution of this system, representing a chatter-free process, needs to be computed before the stability can be investigated. This periodic solution is computed using a finite difference method for delay-differential equations. Especially for low immersion cuts, the stability lobes diagram (SLD) using the updated model shows significant differences compared to the SLD using the traditional model. Also the use of the nonlinear cutting force model results in significant differences in the SLD compared to the linear cutting force model.


Author(s):  
Mathieu Moze ◽  
Jocelyn Sabatier ◽  
Alain Oustaloup

The main point when dealing with Linear Matrix Inequalities (LMI) is convexity. However, with state space representation of fractional systems, the stability domain for a fractional order 0 < ν < 1 is not convex. The classical stability condition thus cannot be extended to fractional systems. In this paper, three LMI based methods are used to characterize stability. The first is based on the second Lyapunov method and provides a sufficient but non-necessary condition. The second and new method provides a sufficient and necessary condition, and is based on a geometric analysis of a fractional system stability domain. The third method is more conventional but involves non strict LMI. A comparison of the first two methods is provided.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Nawel Aoun ◽  
Marwen Kermani ◽  
Anis Sakly

This paper proposes a new approach to deal with the problem of stability under arbitrary switching of continuous-time switched time-delay systems represented by TS fuzzy models. The considered class of systems, initially described by delayed differential equations, is first put under a specific state space representation, called arrow form matrix. Then, by constructing a pseudo-overvaluing system, common to all fuzzy submodels and relative to a regular vector norm, we can obtain sufficient asymptotic stability conditions through the application of Borne and Gentina practical stability criterion. The stability criterion, hence obtained, is algebraic, is easy to use, and permits avoiding the problem of existence of a common Lyapunov-Krasovskii functional, considered as a difficult task even for some low-order linear switched systems. Finally, three numerical examples are given to show the effectiveness of the proposed method.


2018 ◽  
Vol 28 (3) ◽  
pp. 416-428 ◽  
Author(s):  
Sergey A. Mokrushin ◽  
Valeri S. Khoroshavin ◽  
Sergey I. Ohapkin ◽  
Alexander V. Zotov ◽  
Victor S. Grudinin

Introduction.Ensuring the safety of country food industry in terms of the duration of storage and the quality of products is impossible without sterilizing products in autoclaves. The effectiveness of the sterilization processes depends on the degree of their automation. In the last twenty years, the improvement of automatic and automated control systems was primarily based on the development of technical means for automation without theoretical justification of decision-making. The proposed work is aimed at identifying the links between the parameters and connections of the sterilization process and the choice of structural and parametric features of the control system. Materials and Methods. A qualitative analysis is carried out based on the modern theory of automatic control for an approximative model of the thermal process of steam heating in an autoclave, taking into account the laws of heat transfer and the sufficiency of using a twodimensional model depending upon the structural and functional features of the model, which have regard to the parameters and relationships of the process, namely, the Kalman’s controllability properties of the model in the time domain in the state-space representation (the transition from the transfer function with zeros in the numerator to the normal differential system differential equations is also described). There were also analized the stability properties of the model in the frequency domain by means of transfer functions and structural transformations and the relationship of parameters in the form of inequalities with the subsequent choice of proportional-integral-differential configuration components for a real autoclave using the matrix of expert estimates. Results. It is shown that to make a qualitatively study of the issues of controllability and stability of the approximative model of the thermal process of water heating by steam in an autoclave, depending on the process parameters, it is necessary to represent the model the time domain (in the state-space representation) and in the frequency domain (in the form of transfer functions). The analysis of the controllability of the process is based on three approaches: the first (formalized) approach is based on the representation of the model in the form of a normal system of ordinary differential equations in the Cauchy form with the development of a method of decreasing the order of the higher derivatives of coordinates and introducing additional control signals taking into account the control derivatives; the second (unformalized) is based on the exclusion of management derivatives through structural transformation; the third (direct) approach uses the first-order heat balance and heat conduction equations derived from physical considerations. Under the conditions of Kalman’s controllability, dependencies between the parameters of the process and the degree of its controllability have been obtained.The analysis of the stability of the process is based on studying the poles of the transfer functions in the frequency domain and the characteristic roots of the equations of state in the time domain. On the basis of structural transformations, a closed canister heating loop with water with inertia, depending on the autoclave charging parameters, is isolated. Transient processes in this circuit take an amplifying, aperiodic or integral character, which affects the nature of the transient processes of the control system as a whole. The formalized choice of the components of the proportional-integral-differential regulation law is carried out depending on the frequency of application of the degree of loading and the need for the components of the proportional-integral-differential regulator using the matrix of expert estimates. Conclusions. The results of the research will serve as the material for the development of a real model of the autoclaving process, taking into account the static and dynamic characteristics of measuring, conversion and actuating elements, investigating the influence and compensation of inertia and nonlinearities of real elements, followed by the development of an automated system for controlling the sterilization process in autoclaves. The results of the work can be used to study general and applied problems of optimal control in both food and other industries, for example, in the production of building materials and the production of rubber products.


Sign in / Sign up

Export Citation Format

Share Document