An Experimental Study on the Characteristics of Nanoparticles Emission from a Vehicle

2012 ◽  
Vol 508 ◽  
pp. 180-183 ◽  
Author(s):  
Zhao Qin Yin ◽  
Jian Zhong Lin ◽  
Li Juan Qian

The Fast Mobility Particle Sizer (FMPS) has been used to measure the particles number concentration and size distribution (6-560nm) of vehicle exhaust plume. The results reveal that vehicle exhaust contribute dominantly to the number concentration in the atmosphere particle. The particles total concentration decreases in the dispersion process. Furthermore, the transformation processes such as nucleation ,coagulation and condensation happen with dispersion process. Because of large number of nucleation mode particles, the coagulation process is in the advantage, which make the particles diameter increase.

2016 ◽  
Vol 9 (1) ◽  
pp. 103-114 ◽  
Author(s):  
G. I. Gkatzelis ◽  
D. K. Papanastasiou ◽  
K. Florou ◽  
C. Kaltsonoudis ◽  
E. Louvaris ◽  
...  

Abstract. An experimental methodology was developed to measure the nonvolatile particle number concentration using a thermodenuder (TD). The TD was coupled with a high-resolution time-of-flight aerosol mass spectrometer, measuring the chemical composition and mass size distribution of the submicrometer aerosol and a scanning mobility particle sizer (SMPS) that provided the number size distribution of the aerosol in the range from 10 to 500 nm. The method was evaluated with a set of smog chamber experiments and achieved almost complete evaporation (> 98 %) of secondary organic as well as freshly nucleated particles, using a TD temperature of 400 °C and a centerline residence time of 15 s. This experimental approach was applied in a winter field campaign in Athens and provided a direct measurement of number concentration and size distribution for particles emitted from major pollution sources. During periods in which the contribution of biomass burning sources was dominant, more than 80 % of particle number concentration remained after passing through the thermodenuder, suggesting that nearly all biomass burning particles had a nonvolatile core. These remaining particles consisted mostly of black carbon (60 % mass contribution) and organic aerosol (OA; 40 %). Organics that had not evaporated through the TD were mostly biomass burning OA (BBOA) and oxygenated OA (OOA) as determined from AMS source apportionment analysis. For periods during which traffic contribution was dominant 50–60 % of the particles had a nonvolatile core while the rest evaporated at 400 °C. The remaining particle mass consisted mostly of black carbon with an 80 % contribution, while OA was responsible for another 15–20 %. Organics were mostly hydrocarbon-like OA (HOA) and OOA. These results suggest that even at 400 °C some fraction of the OA does not evaporate from particles emitted from common combustion processes, such as biomass burning and car engines, indicating that a fraction of this type of OA is of extremely low volatility.


2019 ◽  
Vol 19 (13) ◽  
pp. 8845-8861 ◽  
Author(s):  
Juntao Wang ◽  
Yanjie Shen ◽  
Kai Li ◽  
Yang Gao ◽  
Huiwang Gao ◽  
...  

Abstract. Determination of the updated concentrations of atmospheric particles (Ncn) and the concentrations of cloud condensation nuclei (Nccn) over the northwestern Pacific Ocean (NWPO) are important to accurately evaluate the influence of aerosol outflow from the Asian continent on the climate by considering the rapid changes in emissions of air pollutants therein. However, field observations in the last two decades are scarce. We conducted a cruise campaign over the NWPO to simultaneously measure Ncn, Nccn and the size distribution of aerosol particles from day of year (DOY) 81 to DOY 108 of 2014. The mean values of Nccn at supersaturation (SS) of levels 0.2 % and 0.4 % were 0.68±0.38×103 and 1.1±0.67×103 cm−3, respectively, with an average of 2.8±1.0×103 cm−3 for Ncn during the cruise over the NWPO. All are approximately 1 order of magnitude larger than spring observations made during the preceding two decades in the remote marine atmosphere. The larger values, against the marine natural background reported in the literature, imply an overwhelming contribution from continental inputs. The calculated activity ratios (ARs) of the cloud condensation nuclei (CCN) were 0.30±0.11 and 0.46±0.19 at SS levels of 0.2 % and 0.4 %, respectively, which are almost the same as those of upwind semi-urban sites. High Nccn and CCN activities were observed from DOY 98 to DOY 102, when the oceanic zone received even stronger continental input. Excluding biomass burning (BB) and dust aerosols, good correlation between Nccn at 0.4 % SS and the number concentrations of > 60 nm particles (N>60 nm) was obtained during the entire cruise period, with a slope of 0.98 and R2=0.94, and the corresponding effective hygroscopicity parameter (κ) was estimated to be 0.40. A bimodal size distribution pattern of the particle number concentration was generally observed during the entire campaign when the N>90 nm varied largely. However, the N<30 nm, accounting for approximately one-third of the total number concentration, varied narrowly, and two NPF events associated with vertical transport were observed. This implies that a pool of nucleation-mode atmospheric particles is aloft. BB and dust events were observed over the NWPO, but their aerosol contributions to Ncn and Nccn were minor (i.e., 10 % or less) on a monthly timescale.


2008 ◽  
Vol 8 (4) ◽  
pp. 15791-15824 ◽  
Author(s):  
H. Venzac ◽  
K. Sellegri ◽  
P. Villani ◽  
D. Picard ◽  
P. Laj

Abstract. Particle number concentration and size distribution are amongst the most important variables needed to constrain the role of the atmospheric particles in the Earth radiative budget. They are also linked to regulated variables such as particle mass (PM) and therefore of interest to air quality studies. However, data on their long-term variability are scarce, in particular at high altitudes where the occurrence of aerosol in elevated layers cannot be resolved from most instruments in space. Therefore it is crucial to provide ground based measurements of suited aerosol variables to obtain closure between all independent information sources. In this paper, we investigate diurnal and seasonal variability of aerosol number concentration and size distribution at the Puy de Dôme research station (France, 1465 m a.s.l.). We report variability of aerosol particle total number concentration measured over a five years (2003–2007) period and aerosol size distributions over a one year period (January to December 2006). Concentrations show a strong seasonality with maxima during summer and minima during winter. A diurnal variation is also observed with maxima between 12:00 and 18:00 UTC. At night (00:00–06:00 UTC), the median hourly total concentration varies from 600 to 800 cm−3 during winter and from 1700 to 2200 cm−3 during summer. During the day (08:00–18:00 UTC), the concentration is in the range of 700 to 1400 cm−3 during winter and from 2500 to 3500 cm−3 during summer. An averaged size distribution of particles (10–500 nm) was calculated for each season. A variability in the size of aerosols sampled at the Puy de Dôme is also observed on the seasonal and diurnal basis. Because the site lies in the free troposphere only a fraction of the time, in particular at night and during the winter season, we have subsequently analyzed the variability for free tropospheric conditions only. We show that the variability is due to both seasonal changes in air mass origin from winter to summer and enhanced concentration of the free troposphere in summer. The later observation can be explained by higher emission intensity in the boundary layer, stronger exchange between the boundary layer and the free troposphere as well as enhanced photochemical processes. Finally, aerosol mean size distributions are calculated for a given air mass type (marine/continental/regional) according to the season, for the specific conditions of the free troposphere. These results are of regional relevance and can be used to constrain chemical-transport models over Western Europe.


2013 ◽  
Vol 391 ◽  
pp. 61-65 ◽  
Author(s):  
Yao Dong Li ◽  
Du Chen ◽  
Feng Wang ◽  
Wei Yuan ◽  
Qi Xing Zhang ◽  
...  

The particles of smoke generated by flaming n-heptane was measured by Fast Particulate Spectrometer (DMS500), and the particle number concentration and size distribution were recorded and analyzed for investigating the smoke dynamic characteristics. The experimental results indicated that the particle number concentrations of buoyant plume above the flame approximately decrease with the height. At the center of ceiling, there is an approximate linear relationship between the particle number concentration and heat release rate. The count median diameter (CMD) varies with time and the change rate of CMD varies with particle concentration. In these experiments, the CMD is a constant in a few minutes after burning extinction.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sandhya Jose ◽  
Amit Kumar Mishra ◽  
Neelesh K. Lodhi ◽  
Sudhir Kumar Sharma ◽  
Sachchidanand Singh

Accurate information about aerosol particle size distribution and its variation under different meteorological conditions are essential for reducing uncertainties related to aerosol-cloud-climate interaction processes. New particle formation (NPF) and the coagulation significantly affect the aerosol size distribution. Here we study the monthly and seasonal variability of aerosol particle size distribution at Delhi from December 2011 to January 2013. Analysis of aerosol particle size distribution using WRAS-GRIMM reveals that aerosol particle number concentration is highest during the post monsoon season owing to the effect of transported crop residue and biomass burning aerosols. Diurnal variations in number concentration show a bimodal pattern with two Aitken mode peaks in all the seasons. Monthly volume size distribution also shows bi-modal distribution with distinct coarse and fine modes. NPF events are observed less frequently in Delhi. Out of 222 days of WRAS data, only 17 NPF events have been observed, with higher NPF frequency during summer season. Growth rate of the nucleation mode of NPF events vary in the range 1.88–21.66 nm/h with a mean value of ∼8.45 ± 5.73 nm/h. It is found that during NPF events the Aitken and nucleation mode particles contribute more to the number concentration. Simultaneous measurement of UV flux and particulate matter (PM10 and PM2.5) have also been done along with particle number size distribution measurement to understand the possible mechanisms for NPF events over the study location.


2021 ◽  
Vol 14 (8) ◽  
pp. 5535-5554
Author(s):  
Pak Lun Fung ◽  
Martha Arbayani Zaidan ◽  
Ola Surakhi ◽  
Sasu Tarkoma ◽  
Tuukka Petäjä ◽  
...  

Abstract. In air quality research, often only size-integrated particle mass concentrations as indicators of aerosol particles are considered. However, the mass concentrations do not provide sufficient information to convey the full story of fractionated size distribution, in which the particles of different diameters (Dp) are able to deposit differently on respiratory system and cause various harm. Aerosol size distribution measurements rely on a variety of techniques to classify the aerosol size and measure the size distribution. From the raw data the ambient size distribution is determined utilising a suite of inversion algorithms. However, the inversion problem is quite often ill-posed and challenging to solve. Due to the instrumental insufficiency and inversion limitations, imputation methods for fractionated particle size distribution are of great significance to fill the missing gaps or negative values. The study at hand involves a merged particle size distribution, from a scanning mobility particle sizer (NanoSMPS) and an optical particle sizer (OPS) covering the aerosol size distributions from 0.01 to 0.42 µm (electrical mobility equivalent size) and 0.3 to 10 µm (optical equivalent size) and meteorological parameters collected at an urban background region in Amman, Jordan, in the period of 1 August 2016–31 July 2017. We develop and evaluate feed-forward neural network (FFNN) approaches to estimate number concentrations at particular size bin with (1) meteorological parameters, (2) number concentration at other size bins and (3) both of the above as input variables. Two layers with 10–15 neurons are found to be the optimal option. Worse performance is observed at the lower edge (0.01<Dp<0.02 µm), the mid-range region (0.15<Dp<0.5 µm) and the upper edge (6<Dp<10 µm). For the edges at both ends, the number of neighbouring size bins is limited, and the detection efficiency by the corresponding instruments is lower compared to the other size bins. A distinct performance drop over the overlapping mid-range region is due to the deficiency of a merging algorithm. Another plausible reason for the poorer performance for finer particles is that they are more effectively removed from the atmosphere compared to the coarser particles so that the relationships between the input variables and the small particles are more dynamic. An observable overestimation is also found in the early morning for ultrafine particles followed by a distinct underestimation before midday. In the winter, due to a possible sensor drift and interference artefacts, the estimation performance is not as good as the other seasons. The FFNN approach by meteorological parameters using 5 min data (R2= 0.22–0.58) shows poorer results than data with longer time resolution (R2= 0.66–0.77). The FFNN approach using the number concentration at the other size bins can serve as an alternative way to replace negative numbers in the size distribution raw dataset thanks to its high accuracy and reliability (R2= 0.97–1). This negative-number filling approach can maintain a symmetric distribution of errors and complement the existing ill-posed built-in algorithm in particle sizer instruments.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 526
Author(s):  
Tianming Sun ◽  
Rui Li ◽  
Ya Meng ◽  
Yu Han ◽  
Hanyun Cheng ◽  
...  

Humic-like substances (HULIS) are of great interest due to their optical and chemical characteristics. In this study, a total of 180 samples of atmospheric particulate matter (PM) of different sizes were collected from summer 2018 to spring 2019, in order to analyze the size distribution, to investigate the seasonal variation and then to identify the key sources of HULIS. The annual mean concentration of HULIS in the total suspended particulates reached 5.12 ± 1.42 μg/m3. The HULIS concentration was extremely higher in winter (8.35 ± 2.06 μg/m3) than in autumn (4.88 ± 0.95 μg/m3), in summer (3.62 ± 1.68 μg/m3) and in spring (3.36 ± 0.99 μg/m3). The average annual ratio of water-soluble organic carbon (WSOC) to OC and the ratio of HULIS to WSOC reached 0.546 ± 0.092 and 0.56 ± 0.06, respectively. Throughout the whole year, the size distributions of WSOC and HULIS-C were relatively smooth. The peaks of WSOC appeared at 1.8~3.2 μm and 0.56~1.0 μm, while the peaks of HULIS-C were located at 3.2~5.6 μm, 1.0~1.8 μm and 0.18~0.32 μm. The distribution of the HULIS particle mode was similar in spring, summer and autumn, while there was a lower proportion of the coarse mode and a higher proportion of the condensation mode in winter. By using the comprehensive analysis of principal component analysis (PCA), air mass backward trajectories (AMBTs) and fire point maps, key sources of WSOC and HULIS in Shanghai were identified as biomass combustion (48.42%), coal combustion (17.49%), secondary formation (16.07%) and vehicle exhaust (5.37%). The remaining part might be contributed by crustal dust sources, marine sources and/or other possible sources. This study provides new insight into the characteristics and size distribution of HULIS in Shanghai, thereby providing a practical base for further modeling.


Sign in / Sign up

Export Citation Format

Share Document