A Two-Step Heterogeneous Catalyzed Process for Biodiesel Production

2012 ◽  
Vol 512-515 ◽  
pp. 330-333
Author(s):  
Xiang Ji ◽  
Shao Min Zhang ◽  
Lu Cai

Heterogeneous catalysts not only can provide as much reactive activity as homogeneous catalysts but they are very much more environmentally benign.This paper introduced a two-step catalyzed process for biodiesel production from low-quality feedstocks, then emphatically reviewed various heterogeneous acid catalysts for pre-esterification and base catalysts for transesterification during this process.

2015 ◽  
Vol 4 (1) ◽  
Author(s):  
Namrata D. Gaikwad ◽  
Parag R. Gogate

AbstractIn the present work, carbon based heterogeneous acid catalysts have been prepared using various synthesis approaches based on the use of sustainable starting materials. The properties of the catalysts have been investigated using Fourier transformed infra-red (FTIR), scanning electron microscopy (SEM), temperature-programmed desorption (NH


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1025
Author(s):  
Mohammed O. Faruque ◽  
Shaikh A. Razzak ◽  
Mohammad M. Hossain

The depletion of fossil fuel reserves and increased environmental concerns related to fossil fuel production and combustion has forced the global communities to search for renewable fuels. In this regard, microalgae-based biodiesel has been considered as one of the interesting alternatives. Biodiesel production from the cultivation of microalgae is eco-friendly and sustainable. Moreover, microalgae have several advantages over other bioenergy sources, including their good photosynthetic capacity and faster growth rates. The productivity of microalgae per unit land area is also significantly higher than that of terrestrial plants. The produced microalgae biomass is rich with high quality lipids, which can be converted into biodiesel by transesterification reactions. Generally, the transesterification reactions are carried out in the presence of a homogeneous or heterogeneous catalyst. The homogeneous catalysts have many disadvantages, including their single use, slow reaction rate and saponification issues due to the presence of fatty acids in the feedstock. The acidic nature of the homogeneous catalysts also causes equipment corrosion. On the other hand, the heterogeneous catalysts offer several advantages, including their reusability, higher reaction rate and selectivity, easy product/catalyst separation and low cost. Due to these facts, the development of solid phase transesterification catalysts have been receiving growing interest. The present review is focused on the use of heterogeneous catalysts for biodiesel production from microalgal oil as a reliable feedstock with a comparison to other available feedstocks. It also highlights optimal reaction conditions for maximum biodiesel yields, reusability of the solid catalysts, cost, and environmental impact. The superior lipid content of microalgae and the efficient concurrent esterification and transesterification of the solid acid−base catalysts can offer new advancements in biodiesel production.


2018 ◽  
Vol 34 (2) ◽  
pp. 267-297 ◽  
Author(s):  
Farrukh Jamil ◽  
Lamya Al-Haj ◽  
Ala’a H. Al-Muhtaseb ◽  
Mohab A. Al-Hinai ◽  
Mahad Baawain ◽  
...  

AbstractDue to increasing concerns about global warming and dwindling oil supplies, the world’s attention is turning to green processes that use sustainable and environmentally friendly feedstock to produce renewable energy such as biofuels. Among them, biodiesel, which is made from nontoxic, biodegradable, renewable sources such as refined and used vegetable oils and animal fats, is a renewable substitute fuel for petroleum diesel fuel. Biodiesel is produced by transesterification in which oil or fat is reacted with short chain alcohol in the presence of a catalyst. The process of transesterification is affected by the mode of reaction, molar ratio of alcohol to oil, type of alcohol, nature and amount of catalysts, reaction time, and temperature. Various studies have been carried out using different oils as the raw material; different alcohols (methanol, ethanol, butanol); different catalysts; notably homogeneous catalysts such as sodium hydroxide, potassium hydroxide, sulfuric acid, and supercritical fluids; or, in some cases, enzymes such as lipases. This article focuses on the application of heterogeneous catalysts for biodiesel production because of their environmental and economic advantages. This review contains a detailed discussion on the advantages and feasibility of catalysts for biodiesel production, which are both environmentally and economically viable as compared to conventional homogeneous catalysts. The classification of catalysts into different categories based on a catalyst’s activity, feasibility, and lifetime is also briefly discussed. Furthermore, recommendations have been made for the most suitable catalyst (bifunctional catalyst) for low-cost oils to valuable biodiesel and the challenges faced by the biodiesel industry with some possible solutions.


2013 ◽  
Vol 824 ◽  
pp. 451-458
Author(s):  
A.K. Temu

One of the disadvantages of homogeneous base catalysts in biodiesel production is that they cannot be reused or regenerated because they are consumed in the reaction. Besides, homogeneous catalysed process is not environmentally friendly because a lot of waste water is produced in the separation step. Unlike homogeneous, heterogeneous catalysts are environmentally benign, can be reused and regenerated, and could be operated in continuous processes, thus providing a promising option for biodiesel production. This paper presents catalytic activity of single and mixed solid catalysts in production of biodiesel from palm oil using methanol as well as ethanol at atmospheric pressure. The catalysts used are CaO, K2CO3, Al2O3, and CaO/K2CO3, CaO/Al2O3, K2CO3/Al2O3 mixtures. Results show that methanol is a better reactant with biodiesel yield ranging from 48 to 96.5% while ethanol gives yields ranging from 20 to 95.2%. The yield data for single catalysts range from 20 to 89.2% while that for mixed catalysts range from 52 to 96.5% indicating improvement in the activity by mixing the catalysts. The study also shows that biodiesel yield increases with catalyst loading which emphasizes the need for sufficient number of active sites. The properties of biodiesel produced compares well with ASTM D6751 and EN 14124 biodiesel standards.


Author(s):  
Nurul Aina Nasriqah Binti Ma’arof ◽  
Noor Hindryawati ◽  
Siti Norhafiza Mohd Khazaai ◽  
Prakash Bhuyar ◽  
Mohd Hasbi Ab. Rahim ◽  
...  

Biodiesel, an environmentally friendly biomass-based fuel, is gaining popularity globally as a cost-effective way to meet rising fuel demand. However, the high cost of raw materials and catalysts continues to drive up biodiesel production. An alternative feedstock with a heterogeneously catalyzed reaction could be the most cost-effective way to stabilize industrial biodiesel growth. Understanding these issues led to the idea of using waste palm oil as a feedstock for biodiesel production. While using waste materials as feedstock for biodiesel is an elegant solution, converting high free fatty acids (FFA) directly into methyl esters has some drawbacks. High FFA processes (acid esterification, then base transesterification) are costly. The commercial processes currently use a homogeneous system with sulfuric acid to catalyze both esterification and transesterification. However, heterogeneous solid acid catalysts are preferred over hazardous mineral acids for high FFA esterification because they are less corrosive, produce less waste, and are easier to separate from reactants and products by filtration, recovery, and reusability. Heterogeneous acid catalysts can also simultaneously catalyze transesterification and esterification reactions. Thus, new waste-based support for heterogeneous catalysts (solid acid catalysts) is required to convert waste oils into biodiesel.


Catalysts ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1271
Author(s):  
Wei Liu ◽  
Fang Wang ◽  
Pengcheng Meng ◽  
Shuang-Quan Zang

Zr-MOF (UiO-66) catalysts PTSA/UiO-66 and MSA/UiO-66 bearing supported sulfonic acids (p-toluenesulfonic acid and methanesulfonic acid, respectively) were prepared through a simple impregnation approach. The UiO-66-supported sulfonic acid catalysts were characterized by X-ray diffraction (XRD), N2 adsorption-desorption, fourier transform infrared spectroscopy (FT-IR) and elemental analysis. The prepared heterogeneous acid catalysts had excellent stability since their crystalline structure was not changed compared with that of the original UiO-66. Zr-MOF MSA/UiO-66 and PTSA/UiO-66 were next successfully used as heterogeneous acid catalysts for the esterification of biomass-derived fatty acids (e.g., palmitic acid, oleic acid) with various alcohols (e.g., methanol, n-butanol). The results demonstrated that both of them had high activity and excellent reusability (more than nine successive cycles) in esterification reactions. Alcohols with higher polarity (e.g., methanol) affected the solid catalyst reusability slightly, while alcohols with moderate or lower polarity (e.g., n-butanol, n-decanol) had no influence. Thus, these developed sulfonic acids-supported metal-organic frameworks (UiO-66) have the potential for use in biodiesel production with excellent reusability.


2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Giovanni Bottari ◽  
Katalin Barta

AbstractAcceptorless dehydrogenation of alcohols has emerged as a powerful methodology for the valorization of biomass derived platform chemicals and building blocks. In this review we provide a short overview of the advantages and possible product outcomes of this method. The main focus will be devoted to the conversion of glycerol, which is the major waste product of biodiesel production, to lactic acid. While extensive research addresses the development of heterogeneous catalysts, recently new and highly active iridium and ruthenium complexes have also been reported. These novel homogeneous catalysts are even more active than the already reported heterogeneous systems and enable the direct conversion of glycerol into lactic acid and molecular hydrogen. While the product hydrogen might be used either as fuel or as reducing agent for other processes, lactic acid is a platform chemical widely employed by the polymer, pharmaceutical and food industries. The used catalytic methodology is atom-economic, waste-free and is uniquely suited for the efficient conversion of renewable resources.


2021 ◽  
Vol 59 (1) ◽  
pp. 66
Author(s):  
Nguyen Thi Thai ◽  
Nguyen Thi Minh Thu

Mg-Alhydrotalcite, MgO-Al2O3 mixed oxides and modified-Y zeolite (sulfated Y zeolite and copper ion-exchanged Y zeolite) were prepared and characterized by XRD, EDX and XRF techniques. These materials were used as heterogeneous catalysts in aldol condensation of vanillin and acetone.The obtained results showed that the heterogeneous acid catalysts as modified-Y zeolites were more effective than the heterogeneous base catalysts as hydrotalcite Mg-Al and MgO-Al2O3 mixed oxides in aldol condensation reaction of vanillin. The highest conversion of vanillin was 95.5% when the reaction was carried out at 120oC in 5 hours, using sulfated Y zeolite. 


2016 ◽  
Vol 22 (4) ◽  
pp. 391-408 ◽  
Author(s):  
Zeljka Kesic ◽  
Ivana Lukic ◽  
Miodrag Zdujic ◽  
Ljiljana Mojovic ◽  
Dejan Skala

Vegetable oils are mainly esters of fatty acids and glycerol, which can be converted to fatty acid methyl esters (FAME), also known as biodiesel, by the transesterification reaction with methanol. In order to attain environmental benignity, a large attention has been focused in the last decades on utilizing heterogeneous catalysts for biodiesel production instead the homogenously catalyzed transesterification of vegetable oil. The pure CaO or CaO mixed with some other metal oxide due to its low solubility in methanol, FAME and glycerol, low cost and availability is one of the most promising among the proposed heterogeneous catalysts. Solid catalysts which contain CaO usually fulfill a number of important requirements, such as high activity at mild temperature, marginal leaching of Ca cations, long life activity, reusability in transesterification of vegetable oil and easy recovery from the final products of transesterification (FAME and glycerol). This review is focused to the recent application of pure CaO or CaO in complex catalyst structure and their use as heterogeneous base catalysts for biodiesel synthesis and suitability for industrial application.


2020 ◽  
Vol 24 (16) ◽  
pp. 1876-1891
Author(s):  
Qiuyun Zhang ◽  
Yutao Zhang ◽  
Jingsong Cheng ◽  
Hu Li ◽  
Peihua Ma

Biofuel synthesis is of great significance for producing alternative fuels. Among the developed catalytic materials, the metal-organic framework-based hybrids used as acidic, basic, or supported catalysts play major roles in the biodiesel production. This paper presents a timely and comprehensive review of recent developments on the design and preparation of metal-organic frameworks-based catalysts used for biodiesel synthesis from various oil feedstocks, including MILs-based catalysts, ZIFs-based catalysts, UiO-based catalysts, Cu-BTC-based catalysts, and MOFs-derived porous catalysts. Due to their unique and flexible structures, excellent thermal and hydrothermal stability, and tunable host-guest interactions, as compared with other heterogeneous catalysts, metal-organic framework-based catalysts have good opportunities for application in the production of biodiesel at industrial scale.


Sign in / Sign up

Export Citation Format

Share Document