Effects of the Accumulation of Different Plastic Film on the Quantities of Soil Microbial

2012 ◽  
Vol 518-523 ◽  
pp. 356-360
Author(s):  
Rui Yu Jia ◽  
Xiao Guang Zhao ◽  
Yang Yang

This study has adopted potted experiment to study systematically the effect on soil microbial quantities of the accumulation of five different plastic film: for 0 year ,for 5years ,for 10 years ,for 15 years ,and for 20 years , and has analyzed the change trends of soil microbial activity. Whose relationship with soil quality has also been explored through analysis of the situation on crop growth, so as to provide scientific basis for law of the accumulation of plastic film on soil microbial activity.

Agriculture ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 491
Author(s):  
Ana Carolina Costa Arantes ◽  
Simone Raposo Cotta ◽  
Patrícia Marluci da Conceição ◽  
Silvana Perissatto Meneghin ◽  
Rodrigo Martinelli ◽  
...  

Techniques such as intercropping and minimum tillage improve soil quality, including soil microbial activity, which stimulates the efficient use of soil resources by plants. However, the effects of such practices in soil under citrus orchards have not been well characterized. In this study, we aimed to determine the effects of mowing and intercrop species on soil microbiological characteristics beneath a Tahiti acid lime orchard. The orchard was planted using minimum tillage and intercropped with two species of Urochloa species (U. ruziziensis—ruzi grass; U. decumbens—signal grass), with two types of mowers for Urochloa biomass (ecological; conventional) and herbicide applications. The study was conducted over 10 years. The ecological mower made the largest deposition of the intercrop biomass, thus providing the lowest disturbance of soil microbial activity and increasing, on average over all 10 years, the basal soil respiration (45%), microbial biomass carbon (25%), abundance of 16S rRNA (1.5%) and ITS (3.5%) genes, and arbuscular mycorrhizal fungi (30%), and providing a ca. 20% higher fruit yield. U. ruziziensis in combination with ecological mowing stimulated the abundance of the genes nifH (1.5%) and phoD (3.0%). The herbicide showed little influence. We conclude that the use of U. ruziziensis as an intercrop in citrus orchards subjected to ecological mowing can be recommended for improving and sustaining soil quality and citrus fruit production.


2019 ◽  
Vol 9 (19) ◽  
pp. 3963
Author(s):  
Xiuxiu Feng ◽  
Lu Zhang ◽  
Fazhu Zhao ◽  
Hongying Bai ◽  
Russell Doughty

Microbial biomass, extracellular enzyme activity, and their stoichiometry in soil play an important role in ecosystem dynamics and functioning. To better understand the improvement of sand soil quality and the limitation of soil nutrients after adding feldspathic sandstone, we investigated changes in soil microbial activity after 10 months of mixing feldspathic sandstone and sand, and compared the dynamics with soil properties. We used fumigation extraction to determine soil microbial biomass carbon (MBC), nitrogen (MBN), phosphorus (MBP), and microplate fluorometric techniques to measure soil β-1,4-glucosidase (BG), β-1,4-xylosidase (BX), β-D-cellobiohydrolase (CBH), N-acetyl-β-glucosaminidase (NAG), and Alkaline phosphatase (AKP). We also measured soil organic carbon (SOC), pH, electrical conductivity (EC), soil inorganic carbon (SIC), and soil water content (SWC). Our results showed that the soil microbial biomass C, N, P, and individual extracellular enzyme activities significantly increased in mixed soil. Similarly, the soil microbial biomass C:N, C:P, N:P, MBC:SOC, and BG:NAG significantly increased by 54.3%, 106.3%, 33.1%, 23.0%, and 65.4%, respectively. However, BG:AKP and NAG:AKP decreased by 19.0% and 50.3%, respectively. Additionally, redundancy analysis (RDA) and Pearson’s correlation analysis showed that SWC, SOC, porosity and field capacity were significantly associated with soil microbial biomass indices (i.e., C, N, P, C:N, C:P, N:P in microbial biomass, and MBC:SOC) and extracellular enzyme activity metrics (i.e., individual enzyme activity, ecoenzymatic stoichiometry, and vector characteristics of enzyme activity), while pH, EC, and SIC had no correlation with these indices and metrics. These results indicated that mixing feldspathic sandstone and sand is highly susceptible to changes in soil microbial activity, and the soil N limitation decreased while P became more limited. In summary, our research showed that adding feldspathic sandstone into sand can significantly improve soil quality and provide a theoretical basis for the development of desertified land resources.


2020 ◽  
Vol 11 (1) ◽  
pp. 19
Author(s):  
Ana Paula Justiniano Régo ◽  
Valdemar Luiz Tornisielo

Concern about soil quality has been increasing due to environmental impacts from anthropogenic actions. The imbalance between its components alters activities in ecosystems. One of the main actions affecting soil quality is the presence of heavy metals, impairing the functioning of the ecosystem. This work evaluated the impacts of metal-contaminated soil on microbial activity after dam failure in Minas Gerais State, Brazil. Microbial respiration measurements and colony quantifications were used for evaluations. Thus, it is hoped that through these bioindicators, we can assess the quality of the environment and from these biostimulators restore the environmental balance, benefiting local communities affected by the disaster. After microbial biostimulation of the soil, there was an increase in the number of bacterial colonies as well as greater accumulation of CO2 over the days. Thus, the addition of nutrients to the metal-impacted soil was essential for initiating the restoration of the affected ecosystem equilibrium.


2012 ◽  
Vol 95 ◽  
pp. S285-S290 ◽  
Author(s):  
M.I. Pérez-Leblic ◽  
A. Turmero ◽  
M. Hernández ◽  
A.J. Hernández ◽  
J. Pastor ◽  
...  

1994 ◽  
Vol 46 (1-2) ◽  
pp. 31-36
Author(s):  
Jean Rouchaud ◽  
Fabrice Gustin ◽  
Dany Callens ◽  
Robert Bulcke ◽  
Joel Gillet ◽  
...  

2002 ◽  
Vol 394 (1-2) ◽  
pp. 171-178 ◽  
Author(s):  
E.Elizabeth Sigstad ◽  
Maricel A Bejas ◽  
M Julia Amoroso ◽  
Celina I Garcı́a

Sign in / Sign up

Export Citation Format

Share Document