The Optimization of Groundwater Dynamic Monitoring Network – An Example of the North Ordos Basin

2012 ◽  
Vol 518-523 ◽  
pp. 4057-4061
Author(s):  
Xiao Yong Wang ◽  
Xu Dong Cui ◽  
Hong Yun Ma ◽  
Zheng Ping Tao

Groundwater management is base on an sufficient dynamic monitoring network of groundwater depth and quality. Whil the monitoring network in Ordos Bain is insufficient due to the network is not been finished yet. Thus, in this paper, the dynamic type mapping method of groundwater based on GIS developing is used to optimize the distribution of dynamic monitoring positions. The purpose of the optimization is to observe reginal dynamics of groundwater with less monitoring wells. The reginal groundwater depth has a impact of hydroecology. Thus the optimization also consider the distribution of vegetations which are closely related with groundwater. The optimization shows that at least 28 new monitoring wells are needed depend on the existing groundwater monitoring network. The monitoring positions of 28 new wells are also estimated by the method.

2021 ◽  
Vol 80 (18) ◽  
Author(s):  
Long Sun ◽  
Yongbing Zhang ◽  
Haiyang Si ◽  
Tema Koketso Ealotswe ◽  
Lei Wei ◽  
...  

2020 ◽  
Vol 10 (3) ◽  
pp. 808 ◽  
Author(s):  
Lv Zhou ◽  
Jiming Guo ◽  
Xuelin Wen ◽  
Jun Ma ◽  
Fei Yang ◽  
...  

Accurate dynamic characteristics of super high-rise buildings serve as a guide in their construction and operation. Ground-based real aperture radar (GB-RAR) techniques have been applied in monitoring and analyzing the dynamic characteristics of different buildings, but only few studies have utilized them to derive the dynamic characteristics of super high-rise buildings, especially those higher than 400 m and under construction. In this study, we proposed a set of technical methods for monitoring and analyzing the dynamic characteristics of super high-rise buildings based on GB-RAR and wavelet analysis. A case study was conducted on the monitoring and analysis of the dynamic characteristics of the Wuhan Greenland Center (WGC) under construction (5–7 July 2017) with a 636 m design height. Displacement time series was accurately derived through GB-RAR and wavelet analysis, and the accuracy reached the submillimeter level. The maximum horizontal displacement amplitudes at the top of the building in the north–south and east–west directions were 18.84 and 15.94 mm, respectively. The roof displacement trajectory of the WGC was clearly identified. A certain negative correlation between the temperature and displacement changes at the roof of the building was identified. Study results demonstrate that the proposed method is effective for the dynamic monitoring and analysis of super high-rise buildings with noninvasive and nondestructive characteristics.


2018 ◽  
Vol 10 (1) ◽  
pp. 64-78 ◽  
Author(s):  
Balázs Trásy ◽  
Tamás Garamhegyi ◽  
Péter Laczkó-Dobos ◽  
József Kovács ◽  
István Gábor Hatvani

Abstract The efficient operation of shallow groundwater (SGW) monitoring networks is crucial to water supply, in-land water protection, agriculture and nature conservation. In the present study, the spatial representativity of such a monitoring network in an area that has been thoroughly impacted by anthropogenic activity (river diversion/damming) is assessed, namely the Szigetköz adjacent to the River Danube. The main aims were to assess the spatial representativity of the SGW monitoring network in different discharge scenarios, and investigate the directional characteristics of this representativity, i.e. establish whether geostatistical anisotropy is present, and investigate how this changes with flooding. After the subtraction of a spatial trend from the time series of 85 shallow groundwater monitoring wells tracking flood events from 2006, 2009 and 2013, variography was conducted on the residuals, and the degree of anisotropy was assessed to explore the spatial autocorrelation structure of the network. Since the raw data proved to be insufficient, an interpolated grid was derived, and the final results were scaled to be representative of the original raw data. It was found that during floods the main direction of the spatial variance of the shallow groundwater monitoring wells alters, from perpendicular to the river to parallel with it for over a period of about two week. However, witht the passing of the flood, this returns to its original orientation in ~2 months. It is likely that this process is related first to the fast removal of clogged riverbed strata by the flood, then to their slower replacement. In addition, the study highlights the importance of assessing the direction of the spatial autocorrelation structure of shallow groundwater monitoring networks, especially if the aim is to derive interpolated maps for the further investigation or modeling of flow.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jiaxuan Song ◽  
Hujun Gong ◽  
Jingli Yao ◽  
Huitao Zhao ◽  
Xiaohui Zhao ◽  
...  

The Paleozoic strata are widely distributed in the northwest of the Ordos Basin, and the provenance attributes of the basin sediments during this period are still controversial. In this paper, the detrital zircon LA-MC-ICPMS U-Pb age test was conducted on the drilling core samples of the Shanxi Formation of the Upper Paleozoic in the Otuokeqi area of the Ordos Basin, and the provenance age and the characteristic of the Shanxi formation in the Otuokeqi area in the northwest were discussed. The cathodoluminescence image shows that the detrital zircon has a clear core-edge structure, and most of the cores have clear oscillatory zonings, which suggests that they are magmatic in origin. Zircons have no oscillatory zoning structure that shows the cause of metamorphism. The age of detrital zircon is dominated by Paleoproterozoic and can be divided into four groups, which are 2500~2300 Ma, 2100~1600 Ma, 470~400 Ma, and 360~260 Ma. The first two groups are the specific manifestations of the Precambrian Fuping Movement (2.5 billion years) and the Luliang Movement (1.8 billion years) of the North China Craton. The third and fourth groups of detrital zircons mainly come from Paleozoic magmatic rocks formed by the subduction and collision of the Siberian plate and the North China plate. The ε Hf t value of zircon ranges from -18.36 to 4.33, and the age of the second-order Hf model T DM 2 ranges from 2491 to 1175 Ma. The source rock reflecting the provenance of the sediments comes from the material recycling of the Paleoproterozoic and Mesoproterozoic in the crust, combined with the Meso-Neoproterozoic detrital zircons discovered this time, indicating that the provenance area has experienced Greenwellian orogeny.


Lithosphere ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 767-783 ◽  
Author(s):  
Christopher Clinkscales ◽  
Paul Kapp

Abstract The Middle–Late Jurassic to earliest Cretaceous fold belts of the Yanshanian orogen in North China remain enigmatic with respect to their coeval deformation histories and possible relationship to the contemporaneous Cordilleran-style margin of eastern Asia. We present geological mapping, structural data, and a >400-km-long, strike-perpendicular balanced cross section for the Taihang-Luliangshan fold belt exposed in the late Cenozoic central Shanxi Rift. The northeast-southwest–trending Taihang-Luliangshan fold belt consists of long-wavelength folds (∼35–110 km) with ∼1–9 km of structural relief cored by Archean and Paleoproterozoic metamorphic and igneous basement rocks. The fold belt accommodated ≥11 km of northwest-southeast shortening between the Taihangshan fault, bounding the North China Plain, in the east and the Ordos Basin in the west. Geological mapping in the Xizhoushan, a northeast-southwest–oriented range within the larger Taihangshan mountain belt, reveals two major basement-cored folds: (1) the Xizhou syncline, with an axial trace that extends for ∼100 km and is characterized by a steep to overturned forelimb consistent with a southeast sense of vergence, and (2) the Hutuo River anticline, which exposes Archean–Paleoproterozoic rocks in its core that are unconformably overlain by shallowly dipping (<∼20°) Lower Paleozoic rocks. In the Luliangshan, Mesozoic structures include the Luliang anticline, the largest recognized anticline in the region, the Ningjing syncline, which preserves a complete section of Paleozoic to Upper Jurassic strata, and the Wuzhai anticline; together, these folds are characterized by a wavelength of ∼45–50 km. Shortening in the Taihang-Luliangshan fold belt is estimated to have occurred between ca. 160 Ma and 135 Ma, based on the age of the youngest deformed Upper Jurassic rocks in the Ningjing syncline, previously published low-temperature thermochronology, and regional correlations to better-studied Yanshanian fold belts. The timing of basement-involved deformation in the Taihang-Luliangshan fold belt, which formed >1000 km from the nearest plate margin, corresponds with the termination of arc magmatism along the eastern margin of Asia, implying a potential linkage to the kinematics of the westward-subducting Izanagi (paleo-Pacific) plate.


Sign in / Sign up

Export Citation Format

Share Document