Effect of EDTA and EDDS on Phytoremediation of Pb- and Zn- Contaminated Soil by Brassica Juncea

2012 ◽  
Vol 518-523 ◽  
pp. 5040-5046 ◽  
Author(s):  
Li Di Gao ◽  
Naoki Kano ◽  
Yuichi Sato ◽  
Shuang Zhang ◽  
Hiroshi Imaizumi

Effect of EDTA and EDDS on phytoremediation of Pb- and Zn- contaminated soil by Brassica Juncea was investigated in this work. Especially, the effect of the kind and the method of adding chelating agent was investigated during the plant growth. Plants were grown in an environmental control system. The biomass of the whole plant was weighed, and the uptake of Pb and Zn in shoot and root were determined using ICP-AES. Consequently, the following matters have been obtained: (1) Both EDTA and EDDS significantly enhanced the translocation of metals (Pb and Zn) in soil from root to shoot. Furthermore, the two chelating agents resulted in a sharply biomass loss for more than 30% of the control. As a result, the total uptake amount of metals by Brassica Juncea was decreased (except the uptake of Pb with the addition of 3.0 mmol•kg-1 EDTA). (2) EDDS showed the higher inhibition for the growth of Brassica Juncea than EDTA. (3) The method for adding EDTA and EDDS at several times separately did not necessarily increase the uptake of heavy metals.

2021 ◽  
Vol 11 (4) ◽  
pp. 1557
Author(s):  
Naoki Kano ◽  
Takumi Hori ◽  
Haixin Zhang ◽  
Naoto Miyamoto ◽  
David Eva Vanessa Anak ◽  
...  

The removal of cadmium (Cd) and zinc (Zn) from soil by phytoremediation was investigated using Taraxacum officinale and Gazania. A plant environmental control system was used to cultivate the plants. The effects of different biodegradable chelating agents (i.e., EDDS, HIDS, and GLDA), relative humidity, and other competitive metals on the adsorption of Cd and Zn were also studied. In addition, the approach for metal recovery was explored by extraction of metals from plants after phytoremediation using Gazania. The concentrations of Cd and Zn were determined by inductively coupled plasma mass spectrometry (ICP-MS). In addition, one-way analysis of variance (ANOVA) tests were performed.to determine significant differences between the experimental treatments adopted in this work. Consequently, the following main conclusions were obtained: (1) In the case of Taraxacum officinale, Cd and Zn could be removed even under the presence of other heavy metals. (2) By adding a chelating agent, the amount absorbed by the shoot generally increased. (3) In the case of Gazania, the concentration of Cd was higher in root than that in shoot, whereas the concentration of Zn was higher in the shoot than that in the root. (4) Taraxacum officinale was more suitable for phytoremediation of Cd than Gazania. (5) Cd and Zn could be extracted from plants by adding a low concentration of nitric acid. (6) The one-way ANOVA tests showed no statistically significant differences among the experimental treatments.


2021 ◽  
Vol 11 (9) ◽  
pp. 4160
Author(s):  
Farheen Nazli ◽  
Xiukang Wang ◽  
Maqshoof Ahmad ◽  
Azhar Hussain ◽  
Bushra ◽  
...  

Untreated wastewater used for irrigating crops is the major source of toxic heavy metals and other pollutants in soils. These heavy metals affect plant growth and deteriorate the quality of edible parts of growing plants. Phytohormone (IAA) and exopolysaccharides (EPS) producing plant growth-promoting rhizobacteria can reduce the toxicity of metals by stabilizing them in soil. The present experiment was conducted to evaluate the IAA and EPS-producing rhizobacterial strains for improving growth, physiology, and antioxidant activity of Brassica juncea (L.) under Cd-stress. Results showed that Cd-stress significantly decreased the growth and physiological parameters of mustard plants. Inoculation with Cd-tolerant, IAA and EPS-producing rhizobacterial strains, however, significantly retrieved the inhibitory effects of Cd-stress on mustard growth, and physiology by up regulating antioxidant enzyme activities. Higher Cd accumulation and proline content was observed in the roots and shoot tissues upon Cd-stress in mustard plants while reduced proline and Cd accumulation was recorded upon rhizobacterial strains inoculation. Maximum decrease in proline contents (12.4%) and Cd concentration in root (26.9%) and shoot (29%) in comparison to control plants was observed due to inoculation with Bacillus safensis strain FN13. The activity of antioxidant enzymes was increased due to Cd-stress; however, the inoculation with Cd-tolerant, IAA-producing rhizobacterial strains showed a non-significant impact in the case of the activity of superoxide dismutase (SOD), peroxidase (POX) and catalase (CAT) in Brassica juncea (L.) plants under Cd-stress. Overall, Bacillus safensis strain FN13 was the most effective strain in improving the Brassica juncea (L.) growth and physiology under Cd-stress. It can be concluded, as the strain FN13 is a potential phytostabilizing biofertilizer for heavy metal contaminated soils, that it can be recommended to induce Cd-stress tolerance in crop plants.


Author(s):  
Khushboo Chaudhary ◽  
Suphiya Khan ◽  
Pankaj Kumar Saraswat

The heavy metal pollution problem is all over the world. Plant-growth-promoting bacteria (PGPB) has transformed heavy metals present in the soil, which removes and minimizes their toxic effects. This chapter highlights the role of plant-growth-promoting bacteria, chelating agents, and nanoparticles for remediation of heavy metals; their mechanism of action; and their applications approach of hyperaccumulation. Therefore, this chapter focuses on the mechanisms by which microorganisms, chelating agents, and nanoparticles can mobilize or immobilize metals in soils and the nano-phytoremediation strategies are addressed for the improvement of phytoextraction as an innovative process for enhancement of heavy metals removal from soil.


1995 ◽  
Vol 7 (1) ◽  
pp. 1-6
Author(s):  
Takehiko HOSHI ◽  
Takeshi TAKIGUCHI ◽  
Masamoto TAKATSUJI

The heavy metal pollution problem is all over the world. Plant-growth-promoting bacteria (PGPB) has transformed heavy metals present in the soil, which removes and minimizes their toxic effects. This chapter highlights the role of plant-growth-promoting bacteria, chelating agents, and nanoparticles for remediation of heavy metals; their mechanism of action; and their applications approach of hyperaccumulation. Therefore, this chapter focuses on the mechanisms by which microorganisms, chelating agents, and nanoparticles can mobilize or immobilize metals in soils and the nano-phytoremediation strategies are addressed for the improvement of phytoextraction as an innovative process for enhancement of heavy metals removal from soil.


2001 ◽  
Vol 49 (4) ◽  
pp. 351-360 ◽  
Author(s):  
K. S. AHMED ◽  
◽  

Phytoremediation is a green technology for the sustainable remediation of surface soils contaminated with toxic heavy metals. When added to soils the chelating agent ethylenediamine tetraacetic acid (EDTA) increased the solubility of heavy elements for plant uptake during phytoremediation. A greenhouse experiment was carried out with two Brassica species (Brassica juncea and Brassica carinata) grown on artificially contaminated soil (20 and 40 mg Cd kg-1) with EDTA added at a rate of 1 g kg-1 soil. With increasing Cd (0, 20 and 40 mg Cd kg-1 soil) contamination the biomass of both the Brassica species decreased. However, Brassica juncea was more tolerant of high levels of Cd in the soil in comparison to B. carinata. The results indicated that EDTA made the cadmium more available to the plants and lowered the Cd content of the soil. The magnitude of the increase in tissue (stem, leaf and root) Cd concentration was higher in B.juncea than in B. carinata and after the application of chelating agent (EDTA). The Brassica juncea species of Indian mustard has better potential for the phytoremediation of soil heavily contaminated with Cd (40 mg Cd kg-1 soil).


Sign in / Sign up

Export Citation Format

Share Document