scholarly journals Efficacy of Indole Acetic Acid and Exopolysaccharides-Producing Bacillus safensis Strain FN13 for Inducing Cd-Stress Tolerance and Plant Growth Promotion in Brassica juncea (L.)

2021 ◽  
Vol 11 (9) ◽  
pp. 4160
Author(s):  
Farheen Nazli ◽  
Xiukang Wang ◽  
Maqshoof Ahmad ◽  
Azhar Hussain ◽  
Bushra ◽  
...  

Untreated wastewater used for irrigating crops is the major source of toxic heavy metals and other pollutants in soils. These heavy metals affect plant growth and deteriorate the quality of edible parts of growing plants. Phytohormone (IAA) and exopolysaccharides (EPS) producing plant growth-promoting rhizobacteria can reduce the toxicity of metals by stabilizing them in soil. The present experiment was conducted to evaluate the IAA and EPS-producing rhizobacterial strains for improving growth, physiology, and antioxidant activity of Brassica juncea (L.) under Cd-stress. Results showed that Cd-stress significantly decreased the growth and physiological parameters of mustard plants. Inoculation with Cd-tolerant, IAA and EPS-producing rhizobacterial strains, however, significantly retrieved the inhibitory effects of Cd-stress on mustard growth, and physiology by up regulating antioxidant enzyme activities. Higher Cd accumulation and proline content was observed in the roots and shoot tissues upon Cd-stress in mustard plants while reduced proline and Cd accumulation was recorded upon rhizobacterial strains inoculation. Maximum decrease in proline contents (12.4%) and Cd concentration in root (26.9%) and shoot (29%) in comparison to control plants was observed due to inoculation with Bacillus safensis strain FN13. The activity of antioxidant enzymes was increased due to Cd-stress; however, the inoculation with Cd-tolerant, IAA-producing rhizobacterial strains showed a non-significant impact in the case of the activity of superoxide dismutase (SOD), peroxidase (POX) and catalase (CAT) in Brassica juncea (L.) plants under Cd-stress. Overall, Bacillus safensis strain FN13 was the most effective strain in improving the Brassica juncea (L.) growth and physiology under Cd-stress. It can be concluded, as the strain FN13 is a potential phytostabilizing biofertilizer for heavy metal contaminated soils, that it can be recommended to induce Cd-stress tolerance in crop plants.

2012 ◽  
Vol 518-523 ◽  
pp. 5040-5046 ◽  
Author(s):  
Li Di Gao ◽  
Naoki Kano ◽  
Yuichi Sato ◽  
Shuang Zhang ◽  
Hiroshi Imaizumi

Effect of EDTA and EDDS on phytoremediation of Pb- and Zn- contaminated soil by Brassica Juncea was investigated in this work. Especially, the effect of the kind and the method of adding chelating agent was investigated during the plant growth. Plants were grown in an environmental control system. The biomass of the whole plant was weighed, and the uptake of Pb and Zn in shoot and root were determined using ICP-AES. Consequently, the following matters have been obtained: (1) Both EDTA and EDDS significantly enhanced the translocation of metals (Pb and Zn) in soil from root to shoot. Furthermore, the two chelating agents resulted in a sharply biomass loss for more than 30% of the control. As a result, the total uptake amount of metals by Brassica Juncea was decreased (except the uptake of Pb with the addition of 3.0 mmol•kg-1 EDTA). (2) EDDS showed the higher inhibition for the growth of Brassica Juncea than EDTA. (3) The method for adding EDTA and EDDS at several times separately did not necessarily increase the uptake of heavy metals.


Life ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 324
Author(s):  
Peng Ye ◽  
Menghua Wang ◽  
Teng Zhang ◽  
Xiaoyu Liu ◽  
He Jiang ◽  
...  

Solanum nigrum L., a hyperaccumulator of cadmium (Cd), is regarded as a promising candidate for phytoremediation of heavy metal pollution. In the present study, the hairy roots of Solanum nigrum L. were selected as a model plant system to study the potential application of Iron-regulated Transporter Gene (IRT1) for the efficient phytoremediation of Cd pollution. The transgenic hairy roots of Solanum nigrum L. expressing the IRT1 gene from Arabidopsis thaliana were successfully obtained via the Agrobacterium tumegaciens-mediated method. Expression of IRT1 reduced Cd stress-induced phytotoxic effects. Significantly superior root growth, increased antioxidant enzyme activities, decreased reactive oxygen species (ROS) levels, and less cell apoptosis were observed in the transgenic hairy roots of Solanum nigrum L. compared to the wild-type lines under Cd stress. Enhanced Cd accumulation was also carried out in the transgenic hairy roots compared to the control (886.8 μg/g vs. 745.0 μg/g). These results provide an important understanding of the Cd tolerance mechanism of transgenic IRT1 hairy roots of Solanum nigrum L., and are of particular importance to the development of a transgenic candidate for efficient phytoremediation process.


2012 ◽  
Vol 58 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Xiao-bing Jing ◽  
Nan He ◽  
Ying Zhang ◽  
Yan-ru Cao ◽  
Heng Xu

The enhanced effect of heavy-metal-mobilizing bacteria on the uptake of Pb, Cu, and Cd by Coprinus comatus from Pb-, Cu-, and Cd-multicontaminated soil was assessed in this study. Thirteen strains, tolerating 800 mg·L–1 Pb, 200 mg·L–1 Cu, and 200 mg·L–1 Cd simultaneously were selected for heavy-metal-solubilizing experiments in soil. The mobilization of heavy metals depended on the characteristics of bacteria and heavy metals. Correlation analysis demonstrated that for Pb solubilization, the acid-producing ability was the most significant factor, while for Cu and Cd, siderophores played a leading role in this process. Four strains, based on their excellent ability to solubilize heavy metal in soil, were applied in pot experiments. The results showed that all strains can promote the growth of C. comatus and meanwhile help mushroom accumulate more heavy metals (Pb, Cd, and Cu). The maximum uptake for total Pb and Cu by C. comatus was observed in inoculations with Bacillus sp. strain JSG1 (2.02- and 2.13-fold, respectively, compared with uninoculated soil), while for Cd, it was recorded in Bacillus sp. strain PB2 treated soil (2.03-fold). Therefore, this work suggests that the mushroom–bacteria interaction can be developed into a novel bioremediation strategy.


2021 ◽  
Author(s):  
Diego Baragaño ◽  
Daniel Arenas Lago ◽  
José Luis R. Gallego ◽  
Rubén Forján Castro

<p>The process of industrial change has resulted in the creation of so-called ‘brownfields’ across Europe, particularly in urban areas, in the industrial sections of cities. The need to recover these brownfields can be linked to the new European Commission program "Zero Wastes", that is, to restore or recondition these areas by applying amendments made with by-products or green elements. In this sense, the capacities of magnesite and biochar, inorganic and organic soil amendments respectively, were tested to reduce metal availability and improve the properties of a soil severely contaminated by Cu, Cd, Pb and Zn. To this end, two implementation steps were performed.</p><p>First, 1 kg pots containing the polluted soil were amended with either magnesite or biochar and then determined metal availability and soil properties at days 15 and 75 in a greenhouse experiment. In addition, to evaluate the impact of the two treatments on plant growth, the experimental trials were carried out using Brassica juncea L. and compost addition. Both amendments, but particularly magnesite, markedly decreased metal availability. Soil properties were also improved, as revealed by increases in the cation exchangeable capacity. However, plant growth was inhibited by magnesite amendment. This effect was probably due to an increase in soil pH, cation exchange capacity and a high Mg concentration. In contrast, biochar increased biomass production whereas decreased the content of metals harvested. Then, a field scale experiment was performed in situ by means of treating 1 ton of the soil with the magnesite and also with the biochar. Brassica juncea L. was used for testing the impact on plants, and the experiment was monitored at 3, 30 and 60 days from the beginning of the experiment. Similar results to the greenhouse experiment were obtained.</p><p>In conclusion, the results indicate that magnesite amendment may be suitable for stabilizing contaminated soils (or even spoil heaps) where revegetation is not a priority. In contrast, although biochar has a lower, but still significant, capacity to immobilize metals, its use emerges as a promising tool for restoring soil properties and thus favoring plant growth.</p><p><strong>Acknowledgment</strong></p><p>This work was supported by the research projects NANOBIOWASH CTM2016-75894-P (AEI/FEDER, UE) and NANOCAREM MCI-20-PID2019-106939GB-I00 (AEI/FEDER, UE).</p><p>Diego Baragaño obtained a grant from the “Formación del Profesorado Universitario” program, financed by the “Ministerio de Educación, Cultura y Deporte de España”.</p><p>Arenas-Lago D. thanks to his postdoc contract ED481D 2019/007 (Xunta de Galicia and Universidade de Vigo).</p>


2008 ◽  
Vol 20 (1) ◽  
pp. 39-50 ◽  
Author(s):  
Sara A. L. de Andrade ◽  
Adriana P. D. da Silveira

The role of arbuscular mycorrhizal fungi (AMF) on cadmium (Cd) accumulation and on the possible attenuation of Cd stress was studied in maize plants (Zea mays L. var. Exceller). Plants inoculated or not with Glomus macrocarpum were exposed to Cd (0-20 µmol L-1), at two P levels (5 and 10 mg L-1) in the nutrient solution. The experiment was conducted in a hydroponic system, using a randomized 2 x 2 x 2 factorial design. The mycorrhiza-Cd interaction on plant growth, nutrients and Cd accumulation, AMF root colonization and on extra-radical mycelium was investigated. Mycorrhiza promoted plant growth whereas Cd addition reduced plant biomass production. No difference in plant Cd concentrations was found between mycorrhizal (M) and non-mycorrhizal (NM) plants, where Cd accumulated mainly in roots. In general, roots showed a slightly higher Cd concentration in the cell wall than in the cytoplasmic fraction, with M roots presenting 26% more Cd in the cell wall fraction than NM roots. Mycorrhizal plants showed higher P/Cd, N/Cd and S/Cd ratios in shoots and roots compared to NM plants. Mycorrhizal colonization and the length of extra-radical mycelium were diminished by Cd addition, the reduction being more pronounced under high-P supply. Addition of Cd induced guaiacol peroxidase (GPOX) activity in roots; however, M plants, in addition to the higher root protein contents, showed no induction of GPOX activity in the presence of Cd, suggesting higher tolerance to Cd. It is concluded that Cd affected mycorrhizal symbiosis by decreasing root colonization and the development of the extra-radical mycelium. Nevertheless, the higher growth and nutrients/Cd ratios observed in M plants indicate an efficient symbiosis capable of alleviating Cd stress.


2018 ◽  
Vol 15 (2) ◽  
pp. 485-494 ◽  
Author(s):  
K. Damodara Chari ◽  
R. Subhash Reddy ◽  
S. Triveni ◽  
N. Trimurtulu ◽  
CH. V. Durga Rani ◽  
...  

Present investigation was carried out to identify plant growth promoting rhizobacterial isolates for abiotic stress tolerance. To achieve this bacterial isolates were isolated from different rhizospheric soils of Telanagana and screened for plant growth promoting properties and tolerance to different abiotic stresses such as pH, temperature, salt, drought and heavy metals. Such PGPR will be helpful for efficient management of abiotic stresses in crop production. Rhizospheric soils from normal, salt affected, drought affected and bulk soils were collected from different places of Telangana state. From all soil samples, based on cultural, morphological and biochemical characterization it was found that forty four were of Bacillus spp. Among the forty four (44) Bacillus isolates, twenty eight (28) isolates were showing plant growth promoting properties. These positive isolates tested for abiotic stress tolerance to pH, temperature, salt, drought and heavy metals (As and Cd). Four isolates were showed growth at pH range from 4-12 (BS 1, BS 3, BS 14, BS 18), five isolates were showed tolerance to 1.5 to 20 % of NaCl concentration (BS 1, BS 3, BS 14, BS 18, BS 42, six isolates showed tolerance to temperature from 20ºC -50ºC (BS 10, BS 14, BS 18, BS 27, BS 37, BS 43), four isolates showed tolerance to water potential from - 0.05 Mpa to- 0.73 Mpa (BS 4, BS 10, BS 18, BS 33).


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Sheikh Hasna Habib ◽  
Hossain Kausar ◽  
Halimi Mohd Saud

Salinity is a major environmental stress that limits crop production worldwide. In this study, we characterized plant growth-promoting rhizobacteria (PGPR) containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase and examined their effect on salinity stress tolerance in okra through the induction of ROS-scavenging enzyme activity. PGPR inoculated okra plants exhibited higher germination percentage, growth parameters, and chlorophyll content than control plants. Increased antioxidant enzyme activities (SOD, APX, and CAT) and upregulation of ROS pathway genes (CAT, APX, GR, and DHAR) were observed in PGPR inoculated okra plants under salinity stress. With some exceptions, inoculation withEnterobactersp. UPMR18 had a significant influence on all tested parameters under salt stress, as compared to other treatments. Thus, the ACC deaminase-containing PGPR isolateEnterobactersp. UPMR18 could be an effective bioresource for enhancing salt tolerance and growth of okra plants under salinity stress.


Sign in / Sign up

Export Citation Format

Share Document