A Discussion about Finite Element Analysis of Aircraft Wing Structure

2012 ◽  
Vol 532-533 ◽  
pp. 427-430
Author(s):  
Wei Tao Zhao ◽  
Tian Jun Yu ◽  
Yi Yang

One of the most significant components of aircraft design is the wing, the wings are the main lifting surfaces that support the airplane in flight. The structures of wings must have enough strength and rigidity to ensure the safe of the aircraft. Usually, the displacements of the structures are calculated by using finite element method. But it is very difficult to select a reasonable finite element model to approximate the actual structure. In this study, two models are adopted to calculate the displacements of the wing structure. The first is a model of rod and shear plate, the second is a model of beam and shell. The disadvantages and advantages of two models are discussed. As seen from the comparison with the test date, two models proposed are both feasible to analyze the wing structure.

2014 ◽  
Vol 721 ◽  
pp. 131-134
Author(s):  
Mi Mi Xia ◽  
Yong Gang Li

To research the load upper bracket of Francis hydroelectric unit, then established the finite-element model, and analyzed the structure stress of 7 operating condition points with the ANSYS software. By the strain rosette test, acquired the data of stress-strain in the area of stress concentration of the upper bracket. The inaccuracy was considered below 5% by analyzing the contradistinction between the finite-element analysis and the test, and match the engineering precision and the test was reliable. The finite-element method could be used to judge the stress of the upper bracket, and it could provide reference for the Structural optimization and improvement too.


Author(s):  
J. Poirier ◽  
P. Radziszewski

The natural frequencies of circular saws limit the operating speeds of the saws. Current industry methods of increasing natural frequency include pretensioning, where plastic deformation is induced into the saw. To better model the saw, the finite element model is compared to current software for steel saws; C-SAW, a software program that calculates frequencies for stiffened circular saws. Using C-SAW and the finite element method the results are compared and the finite element method is validated for steel saws.


2014 ◽  
Vol 1061-1062 ◽  
pp. 421-426 ◽  
Author(s):  
Panupich Kheunkhieo ◽  
Kiatfa Tangchaichit

The purposes of this research are to explore the baseplate and actuator arm deformation which effect to the gram load which occur in the ball swaging process, the main component determining quality of assembly the head stack assembly with the actuator arm. By shooting a ball though the base plate, the component located on the head stack assembly, the base plate plastic deformation takes place and it in expand in radial direction. The base plate then adjoins with the actuator arm. Using the finite element method to reproduce the ball swaging process, we repeated to study effect of the swage press clamp and velocity. The study done by creating the three dimensionals finite element model to analyze and explain characteristics of the baseplate and actuator arm deformation which effect to gram load which effect to the ball swaging process.


2013 ◽  
Vol 683 ◽  
pp. 556-559
Author(s):  
Bin Bin Jiao ◽  
Fu Sheng Yu ◽  
Yun Jiang Li ◽  
Rong Lu Zhang ◽  
Gui Lin Du ◽  
...  

In order to study the distribution of the stress field in the high-speed intermittent cutting process, finite element model of high-speed intermittent cutting is established. Exponential material model of the constitutive equation and adaptive grid technology are applied in the finite element analysis software AdvantEdge. The material processing is simulated under certain cutting conditions with FEM ( Finite Element Method ) and the distribution of cutting force, stress field, and temperature field are received. A periodic variation to the cutting force and temperature is showed in the simulation of high-speed intermittent cutting. Highest value of the milling temperature appears in front contacting area of the knife -the chip.and maximum stress occurs at the tip of tool or the vicinity of the main cutting edge. The analysis of stress and strain fields in-depth is of great significance to improve tool design and durability of tool.


2011 ◽  
Vol 287-290 ◽  
pp. 717-722 ◽  
Author(s):  
Zhen Ting Wu ◽  
Shun Jiang Li

In order to increase the designing precision and study the main factors influencing the stability of metal elastic-jumping membrane, a set of experimental equipments have been designed to test the stability of metal elastic-jumping membrane. The laws of influencing the stability of elastic-jumping membrane were studies by changing the thickness, high, radius etc structure parameter. It shows that the increasing of high and thickness can enhance the distortion rigidity of metal elastic-jumping membrane, result in the increase of critical load at losing stability; the increasing of diameter can reduce the distortion rigidity of metal elastic-jumping membrane, result in the decrease of critical load at losing stability. At the same time, the correctness of finite element model was confirmed, and the basis was established for finite element method applying in optimizing design of metal elastic-jumping membrane.


2014 ◽  
Vol 945-949 ◽  
pp. 190-193
Author(s):  
Hai Lin Wang ◽  
Yi Hua Sun ◽  
Ming Bo Li ◽  
Gao Lin ◽  
Yun Qi Feng ◽  
...  

Q43Y-85D type crocodile hydraulic clipping machine was taken as research object to optimization design. A finite element model for clipping machine was built using shell unit as fundamental unit. ANSYS12.0 finite element method was used to analyze the deformation and stress distribution of the shear platform model of hydraulic clipping machine. The result showed that the maximum equivalent stress at the dangerous area was 368.162 MPa and the maximum elastic strain was 0.1814×10-2 mm. After the structural optimization design, it was found that the maximum equivalent stress decreased to 186.238 MPa which did not exceed the material’s yield limitation 215 MPa and the maximum elastic strain decreased to 0.919×10-3 mm which satisfied the requirement of stiffness.


2013 ◽  
Vol 376 ◽  
pp. 423-427 ◽  
Author(s):  
S. Prabhakaran ◽  
S. Ramachandran

Gearing is one of the most critical components in mechanical power transmission systems.. This paper explains about the comparison of the geometry of Helical gears for two different modules by modeling and mathematical equations, load distribution at various positions of the contact line and the stress analysis of Helical gears using three-dimensional finite element method. The bending stresses were examined using three-dimensional finite element model.. These stresses of different modules obtained from the finite element analysis were compared and the considerable reduction of weight occurred was found and also the values are compared with the theoretical values. Both results agree very well. This indicates that the finite element method model is accurate.


2014 ◽  
Vol 697 ◽  
pp. 173-176
Author(s):  
Hao Zou ◽  
Ming Zhang ◽  
Jia Jun Ren

In this paper, authors made contrast with the three finite element methods in analysis accuracy and usability .Those are all based on the structural analysis of mining excavator arm. The first fem is using UG solid modeling capabilities to create model .The finite element model is generated by UG_ANSYS, including setting the loads of material properties and boundary conditions ,also loading work. The process is called preprocessing completely .Then export a“. inp” file,after that, imported that file directly into ANSYS software for solving. The second one is to import solid mode created in UG into ANSYS software directly ,then take pretreatment and solution accordingly.The last one is using UG modeling and UG NX NASTRAN (the finite element analysis function) for structure analysis. It is concluded that using UG completely pretreatment of ANSYS analysis method and UG NX NASTRAN method feel more convenient to operate it with the high analyze accuracy,with the two methods , designers can modify mining mechanical arm weak positions more easily.In turns,they can improve the designing level of physical prototyping.


2012 ◽  
Vol 433-440 ◽  
pp. 3489-3494
Author(s):  
Ying Bin Kang ◽  
Ying Bin Kang ◽  
Hui Xia Bian ◽  
Jian Wei Zhang

In this paper, the characteristics of the two software ANSYS and FLAC are analyzed. Using the powerful preprocessing capabilities of ANSYS, the earth dam is analyzed by finite element method. And then, the analysis model by the FISH language is imported into FLAC, with the constitutive model and the completed finite element model, the model analysis and processing are studied. Practical project is dam seepage and stability analysis to verify the reliability of the method.


2014 ◽  
Vol 530-531 ◽  
pp. 284-288
Author(s):  
Jian Rong Yang ◽  
He Xian Su ◽  
Zheng Chong Lai

Modal experiment and 3D finite element analysis are performed on a newly-built self-anchored suspension bridge. The structural modal parameters are identified under ambient vibration excitation. Before that, a 3D finite element model of the bridge is generated using a commercially available finite element package. The measured data as well as the calculated are compared carefully. It illustrates that both of them are in reasonable concordance. The natural frequency of the actual structure is relatively higher than that of finite element model which means the actual bridge is much stiffer than its original design model.


Sign in / Sign up

Export Citation Format

Share Document