Manufacturing of Porous Biomaterials for Dental Implant Applications through Selective Laser Melting

2012 ◽  
Vol 535-537 ◽  
pp. 1222-1229 ◽  
Author(s):  
Francesco Cardaropoli ◽  
Vittorio Alfieri ◽  
Fabrizia Caiazzo ◽  
Vincenzo Sergi

The paper discusses the possibility of manufacturing dental implants through Selective Laser Melting (SLM) of a Ti-6Al-4V alloy powder. Among all possible biomaterials, this alloy is widely used in biomedical applications due to high biocompatibility. Selective Laser Melting allows to obtain biomaterials with peculiar characteristics in terms of porosity gradient, roughness, customized geometry, and mechanical properties. Influence of input process parameters on porosity and analysis of Selective Laser Melting capabilities in implant dentistry have been focused. Porosity is a key parameter in dental implants as it affects stiffness, which is related to Young’s modulus. Ti-6Al-4V bulk material presents a Young’s modulus of 110 GPa, whereas the bone one ranges from 10 to 26 GPa. The relative difference of mechanical properties causes the phenomenon of stress shielding, which has a detrimental effect on the longevity of dental implants. Total porosity is important in reducing the effective modulus of porous metals. Biomaterials specimens obtained during experimental phase have been examined in terms of porosity (in inverse ratio to relative density), microstructure, microhardness and roughness. According to test results discussed in this paper, Selective Laser Melting is proved to be an efficient technology for the construction of Ti-6Al-4V dental implants, because biomaterials with adequate properties can be obtained changing processing parameters. Other fabrication techniques fail to produce biomaterials for dental implants with the desired features.

Author(s):  
Jie Niu ◽  
Hui Leng Choo ◽  
Wei Sun ◽  
Sui Him Mok

Research on materials, design, processing, and manufacturability of parts produced by additive manufacturing (AM) has been investigated significantly in the past. However, limited research on tensile behavior of cellular lattice structures by AM was carried out. In this paper, effective tensile Young's modulus, E*, of triangular lattice structures was determined. Firstly, analytical solution was derived based on Euler–Bernoulli beam theory. Then, numerical results of E* were obtained by finite element analysis (FEA) for triangular lattice structures classified by three shape parameters. The effects of side length, L, beam thickness, t, and height, h, on E* were investigated individually. FEA results revealed that there is a relationship between E* and the relative density and shape parameters. Among them, t has the most significant effect on E*. Numerical results were also compared with the results from modified general function for cellular structures and modified formula for triangular honeycomb. The E* predicted by the proposed analytical solution shows the best agreement with the numerical results. Finally, tensile tests were carried out using AlSi10 Mg triangular lattice structures manufactured by selective laser melting (SLM) process. The experimental results show that both analytical and numerical solutions are able to predict E* with good accuracy. In the future, the proposed solution can be used to design lightweight structures with triangular unit cells.


2017 ◽  
Vol 743 ◽  
pp. 9-12
Author(s):  
Zhanna G. Kovalevskaya ◽  
Margarita A. Khimich ◽  
Andrey V. Belyakov

Porosity, values of nanohardness and Young’s modulus of the specimens obtained with the method of selective laser melting were measured with optical methods, scanning electron microscopy and Nano Hardness Tester NHT-S-AX-000X device for measuring physicomechanical properties. Ti-45wt%Nb powder obtained with mechanical alloying was used for selective laser melting. The results have shown that increased heat input due to the laser power growth up to 80 W and scanning speed decrease down to 40 mm/s decreases the porosity of the specimen. The nanohardness average value is not sensitive to the changes of scanning modes in the investigated range. The Young’s modulus decreases with energy input increase.


2007 ◽  
Vol 353-358 ◽  
pp. 2954-2957 ◽  
Author(s):  
Hideo Miura ◽  
Kazuhiko Sakutani ◽  
Kinji Tamakawa

The mechanical properties of copper thin films deposited by sputtering and electroplating were compared using tensile test and nano-indentation. Both the Young’s modulus and tensile strength of the films were found to vary drastically depending on the microstructure of the deposited films. The Young’s modulus of the sputtered film was almost same as that of bulk material. However, the Young’s modulus of the electroplated thin film was about a fourth of that of bulk material. The micro structure of the electroplated film was polycrystalline and a columnar structure with a diameter of a few hundred-micron. The strength of the grain boundaries of the columnar grains seemed to be rather week. In addition, there was a sharp distribution of Young’s modulus along the thickness direction of the film. Though the modulus near the surface of the film was close to that of bulk material, it decreased drastically to about a fourth within the depth of about 1 micron. There was also a plane distribution of Young’s modulus near the surface of the film.


Author(s):  
Muneyuki Otani ◽  
Kazuhiko Sakutani ◽  
Kinji Tamakawa ◽  
Ken Suzuki ◽  
Hideo Miura

The mechanical properties of copper thin films formed by cold-rolling and electroplating were measured using a tensile test and nano-indentation. Both the Young’s modulus and the tensile strength of the films were found to vary drastically depending on the microstructure of the films. The Young’s modulus of the cold-rolled film was almost same as that of the bulk material. However, the Young’s modulus of the electroplated thin film was about a fourth of that of the bulk material. The microstructure of the electroplated film was polycrystalline and a columnar structure with a diameter of a few hundred-micron. The strength of the grain boundaries of the columnar grains seemed to be rather week. Such a columnar structure with porous grain boundaries caused the cooperative grain boundary sliding. As a result, the effective elasticity of the film became rather low and the superplastic deformation of the film appearred under an uni-axial tensile load. In addition, there was a sharp distribution of Young’s modulus along the thickness direction of the film. Though the modulus near the surface of the film was close to that of the bulk material, it decreased drastically to about a half at the depth of 1 μm. There was also a planar distribution of Young’s modulus near the surface of the film.


2019 ◽  
Vol 107 (2) ◽  
pp. 207 ◽  
Author(s):  
Jaroslav Čech ◽  
Petr Haušild ◽  
Miroslav Karlík ◽  
Veronika Kadlecová ◽  
Jiří Čapek ◽  
...  

FeAl20Si20 (wt.%) powders prepared by mechanical alloying from different initial feedstock materials (Fe, Al, Si, FeAl27) were investigated in this study. Scanning electron microscopy, X-ray diffraction and nanoindentation techniques were used to analyze microstructure, phase composition and mechanical properties (hardness and Young’s modulus). Finite element model was developed to account for the decrease in measured values of mechanical properties of powder particles with increasing penetration depth caused by surrounding soft resin used for embedding powder particles. Progressive homogenization of the powders’ microstructure and an increase of hardness and Young’s modulus with milling time were observed and the time for complete homogenization was estimated.


2021 ◽  
Vol 31 (5) ◽  
pp. 1350-1362
Author(s):  
Yong HU ◽  
Xiao-kang YANG ◽  
Wen-jiang KANG ◽  
Yu-tian DING ◽  
Jia-yu XU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document