Research on the Thermal Performance of New Sandwich Insulation Composite Wall Panel

2012 ◽  
Vol 567 ◽  
pp. 220-223 ◽  
Author(s):  
Shan Xia ◽  
Guang Hui Xia ◽  
Jian Hua Cui ◽  
Wan Yun Yin

Based on the energy saving design standards in hot summer and cold winter zone like Anhui province, a new type of sandwich insulation composite wall panel is researched, Influence on thermal performances of new sandwich insulation composite wall panel,due to in different thermal insulation material, different content of the oblique connection rebar, different thermal insulation layer thickness and different internal and external wall thickness, are analyzed. The results show that, in not take extra insulation measures, this kind of sandwich insulation composite wall panel thermal performance can meet the hot summer and cold winter area energy-saving design standard requirements. Research results and practical engineering contact tightly, It has a comparatively high practical value.

2012 ◽  
Vol 174-177 ◽  
pp. 988-992
Author(s):  
Shuang Mei Cao

This thesis analyzes the current situation of the heat insulation system of composite wall in China. Through comparison, it points out that heat insulation system is the trend of the development for heat preservation and energy saving, and meanwhile, it gives direction for further research to several different new type heat insulation systems.


2011 ◽  
Vol 194-196 ◽  
pp. 1134-1137 ◽  
Author(s):  
Deng Ling Jiang ◽  
Jing Zhao ◽  
Guo Wei Ni

As is known to us, producing tradition wall materials will consume lots of energy and spoil the environment. Therefore, new-type wall has aroused great concern among people in construction, which is green, insulating and energy-saving and so on. External insulation, promoted as an energy-saving technology in building insulation, has three more mature technologies. This paper also introduces polyurethane insulation material, as the third generation of energy-saving wall materials, has a very good application prospect in scientific research. Finally, in the last of the paper, relative countermeasures and suggestions are made to improve the status and development of new-type wall materials, for instance: we should make the most of industrial waste, make deep research in new composite wall systems and wall materials; take some effective measures to accelerate the application of new wall materials and so on.


2013 ◽  
Vol 676 ◽  
pp. 22-26 ◽  
Author(s):  
Jian Guo Yang ◽  
Gang Wang ◽  
Ke Wei Ding

This paper research applied to using energy-saving insulation in hot summer and warm winter area of sandwich wall panels, study on thermal insulation thermal insulation property of composite wall panel through 2 sets of thermal performance test, and the test results for comparative analysis with finite element analysis results. The analysis shows that the wallboard is not only good insulation properties, but also to meet the requirements prescribed by the state building energy-saving insulation and hot summer Cold Winter areas of building energy-saving insulation requirements.


2013 ◽  
Vol 671-674 ◽  
pp. 1791-1795
Author(s):  
Qian Gu ◽  
Sheng Ren ◽  
Yue Wang ◽  
Hao Luo

The thermal performance of a new regenerated glass pumice board as external wall thermal insulation material was analyzed in this paper. Considering the roles of solar radiation and air convection, and selecting Wuhan city as an example of the hot summer and cold winter zones, the temperature field distributions of the external building walls in different orientations in summer and winter seasons were numerically simulated by using the finite element software ANSYS. The thermal performance of regenerated glass pumice exterior wall external insulation system including the heat transfer coefficient and the temperature distribution was evaluated. The simulation results demonstrate the good thermal insulation performance of the regenerated glass pumice as a new kind of external wall materials, and the feasibility of the application of this environmentally friendly material to the wall insulation system in energy conservation building is also promoted.


2012 ◽  
Vol 476-478 ◽  
pp. 1589-1595
Author(s):  
Yi Ping Zhu ◽  
Xi Liao ◽  
Shu Yun Wu ◽  
Jing Luo ◽  
Yuan Jiang ◽  
...  

Based on indoor thermal environment test and questionnaire surveys, the paper studies on thermal insulation capacity and indoor thermal environment of the vernacular dwellings in Wei-he Plain of Shaanxi Province, China, and analyses their heating methods and application status. Besides, the popularity of sustainable techniques in local area has been evaluated and summarized. Moreover, the paper discusses the present problems in local indoor thermal environment and energy-saving status.


2020 ◽  
pp. 174425912093672
Author(s):  
Haiyan Fu ◽  
Yewei Ding ◽  
Minmin Li ◽  
Yu Cao ◽  
Wenbo Xie ◽  
...  

In order to improve the comfort of the living environment, the thermal performance and temperature–humidity regulation of the exterior walls of two timber-framed structure buildings is theoretically calculated and experimentally studied in this study. Both of the two buildings are located in Nanjing, China, the hot-summer and cold-winter zone. Then WUFI is used to simulate and predict the changes of temperature, relative humidity, and water content of the two timber-framed structure buildings, to strengthen the theoretical analysis of the thermal and humidity coupling of the external walls, and to propose an optimal design scheme for the insulation and temperature and humidity regulation of the external walls. The main results show that the tested thermal conductivity is basically consistent with the predicted value, which prove that WUFI simulation can effectively predict the thermal insulation performance of the external wall. The two timber-framed structure buildings are both suitable for the cold areas, and the reasonable optimization of the design of the structure is the key to the insulation of the building wall. Timber-framed structure is proved to have good temperature–humidity regulation effect. The moisture content of the two timber-framed structure buildings is stable, and the annual temperature and winter humidity are within the appropriate humidity range, which indicates that the wall design is suitable for Nanjing hot-summer and cold-winter climate zone. Four types of wall structure indoor mold spore germinations are less likely, which is not easy to produce the mold. The above research aims to optimize the design of the energy-saving wall of the timber-framed structure and create a comfortable and healthy living environment.


2012 ◽  
Vol 461 ◽  
pp. 237-240 ◽  
Author(s):  
Yan Zhu ◽  
Jian Ge ◽  
Dan Hua Ying

Buildings have consumed around 1/4-1/3 of the country’s energy consumptions, of which the envelope structures, especially the outer walls, takes the largest percentage. The pilot program for external thermal insulation in new rural construction has commenced along with full implementation of outer wall energy saving and thermal insulation in Hot Summer and Cold Winter Zone. The program has proved the thermal insulating technology which is characterized by broad applicability, strong operability, reliable thermal insulating performance and low comprehensive cost, is a set of thermal insulating technology compatible with the level of rural economic and technical development in China.


Author(s):  
Raphaele Malheiro ◽  
Adriana Ansolin ◽  
Christiane Guarnier ◽  
Jorge Fernandes ◽  
Lívia Cosentino ◽  
...  

The building sector plays a significant role in reducing global energy use and carbon emissions. In the European Union (EU), the building stock represents 40% of total energy use and in which cooling and heating systems represent over 50%. Portugal is one of the EU countries where the consequences of energy poverty are most evident due to the families' financial inability to adequately climate their homes. The reasons are several, but they are mainly linked to buildings' poor passive thermal performance, resulting from inadequate adaptation to the climatic context and reduced thermal insulation. Thus, it is necessary to develop solutions to increase buildings’ thermal performance and reduce their potential environmental impact, which arises mainly from the significant use of active systems. In this sense, natural building materials are a promising solution, reducing energy use and carbon emissions related to buildings. This research studies the potential use of reed found in Portugal (Arundo donax) as a thermal insulation material. Its physical characterisation and the influence of geometry configuration on its thermal performance are evaluated. Its durability was studied too. Reed stalks were used to carry out the physical and durability tests. A reed board (150 x 150 mm) was built, and its thermal performance was tested in a hotbox. According to the results, the characteristics of reeds found in Portugal make it suitable to be used as a building material. Furthermore, regardless of the configuration studied, the reeds have a satisfactory thermal performance to be used as thermal insulation, under the requirements defined by Portuguese thermal regulation, Re ≥ 0.30 (m2.oC)/W. There is a trend to the mould growth in the reed, but only under favourable conditions. Additionally, considering the abundance of reed throughout the Portuguese territory, this is an eco-friendly and low-cost option that gathers all requirements to be more used in the construction market.


2022 ◽  
Vol 906 ◽  
pp. 99-106
Author(s):  
Siranush Egnatosyan ◽  
David Hakobyan ◽  
Spartak Sargsyan

The use of thermal insulation materials to reduce the heating and cooling demand of the building in order to provide energy efficiency is the main solution. But there is a wide range of these products on the market and, therefore, the choice and application of these materials is a rather difficult task, since many factors must be taken into account, such as environmental safety, cost, durability, climatic conditions, application technology, etc. Basically, comfort microclimate systems are designed based on normative standards, where the thickness of the thermal insulation material is selected depending on the required heat transfer resistance. These values are calculated taking into account climate conditions, that is the duration of the heating period, as well as taking into account sanitary and hygienic requirements. This article discusses the thermal performance of building materials, and also provides a comparative analysis of the use of thermal insulation materials depending on climatic factors and on the system providing comfort microclimate. Based on the calculations by mathematical modeling and optimization, it is advisable to choose the thickness of the thermal insulation, taking into account the capital and operating costs of the comfort microclimate systems. Comparing the optimization data with the normative one, the energy efficiency of the building increases by 50-70% when applying the optimal thickness of the thermal insulation layer, and when the thermal insulation layer is increased, the thermal performance of the enclosing structures has improved by 30%, which contributes to energy saving.


2014 ◽  
Vol 919-921 ◽  
pp. 1725-1729
Author(s):  
Hong Mei Liu ◽  
Cheng Qun Wu ◽  
Yuan Bin Xu ◽  
Ai Dong Zhu

External wall has great impact on building energy conservation. Developing composite wall is direct way to improve the situation of building consumption. In this study, the importance of building energy conservation was analyzed. Several types of composite thermal insulation wall were listed and their advantages and disadvantages were discussed. Self-insulation composite wall has unique superiority, especially in hot summer and cold winter zone. Meanwhile, the application prospect of composite wall with combinations of insulation coating of high reflectivity and silt sintered porous brick was introduced. Finally, combining regional character, some suggestions were proposed on the further development of China’s composite wall in hot summer and cold winter zone.


Sign in / Sign up

Export Citation Format

Share Document