Microstructure Transformation of Nb-V Microalloyed Steel during Continuous Cooling Process

2012 ◽  
Vol 590 ◽  
pp. 23-27
Author(s):  
Xin Li ◽  
Jie Zhao ◽  
Jun Cheng Bao ◽  
Bao Qun Ning ◽  
Jian Ping Li

To achieve reasonable rolling technology of the novel Nb-V composite microalloyed steel, the continuous cooling transformation (CCT) curve was established by thermal simulation experiment. Microstructure and microhardness at different cooling rates were characterized using an optical microscope (OM) and microhardness tester. The results indicate that the critical quenching speed of Nb-V microalloyed steel is about 23 °C/s. The start and finishing temperatures of phase transformation decreased with the rise of cooling rate. Widmannstatten (W) structure appears at lower cooling rate interval. Microstructure transfers into martensite (M) and bainite (B) with obviously refined grains in higher cooling rate interval. Microhardness improves with the increase of cooling rates. Microhardness value is greatly improved to 298.6 HV at the cooling rate of 11 °C/s, which could be related to the formation of lower bainite during phase transformation process. When the cooling rate is above 29 °C/s, microhardness values remain unchanged basically. This illustrates that the microstructure of Nb-V microalloyed steel consists of martensite and lower bainite.

2013 ◽  
Vol 652-654 ◽  
pp. 947-951
Author(s):  
Hui Li ◽  
Yun Li Feng ◽  
Da Qiang Cang ◽  
Meng Song

The static continuous cooling transformation (CCT)curves of 3.15 Si-0.036 C-0.21 Mn-0.008 S-0.008 N-0.022 Al are measured on Gleeble-3500 thermal mechanical simulator, the evolution of microstructure and the tendency of hardness are investigated by optical microscope (OM) and hardness tester. The results show that there is no evident change in microstructure which mainly are ferrite and little pearlite under different cooling rates, but the transition temperature of ferrite is gradually reduced with the increase of cooling rate. When the cooling rate is increased from 0.5°C/s to 20°C/s, the ending temperatures of phase transformation are decreased by 118°C, when cooling rate reaches to 10, Widmanstatten ferrite appears. The hardness of the steel turns out gradual upward trend with the increase of cooling rate.


2021 ◽  
Vol 1035 ◽  
pp. 396-403
Author(s):  
Ping Yu ◽  
Ren Bo Song ◽  
Wen Ming Xiong ◽  
Wei Feng Huo ◽  
Chen Wei ◽  
...  

Through the Gleeble3500 thermal simulation test machine, the phase transformation law of Nb microalloyed steel was studied and tested. After the compression deformation, it was cooled to room temperature at different speeds. Obtain the dynamic continuous cooling transformation diagram and the scanning structure diagram of the test steel, and then analyze the phase composition under different cooling speeds through JMatPro material performance simulation. The results show that: at a lower cooling speed (0.1°C/s), austenite decomposition is a diffusion-type phase change that takes place in a high-temperature region, and carbon atoms can diffuse sufficiently. At a moderate cooling rate (1°C/s), the bainite phase transition is a semi-diffusion phase transition in which carbon atoms are displaced in a non-cooperative thermally activated transition mode. When the cooling rate is high (15°C/s), the martensitic transformation is a non-diffusion-type transformation carried out in the low temperature region, and the atoms are directly transferred from the austenite lattice to the martensite lattice. With the increase of the cooling rate and the decrease of the transition temperature, from low-speed cooling→medium-speed cooling→high-speed cooling, respectively, the diffusion type phase transition→semi-diffusion type phase transition→the non-diffusion type phase transition. At different cooling rates, the continuous cooling transition diagram simulated by JMatPro is basically the same as the phase transition in the dynamic continuous cooling transition diagram of the test steel, which proves that the simulation prediction of the dynamic continuous cooling transition of the test steel by the JMatPro software has high accuracy and applicability.


2014 ◽  
Vol 556-562 ◽  
pp. 480-483
Author(s):  
Chen Zhang ◽  
Guang Xu ◽  
Zhang Wei Hu ◽  
Hai Lin Yang

The continuous cooling transformation (CCT) behavior of a Ti attached steel was studied through thermal simulation tests, and the influences of different cooling rates on the microstructure and transformation were investigated. The results show that the microstructure changes with the cooling rate, and the CCT curve of studied steel is plotted, which indicates that the solid-state phase transformation mainly consists of four regions. The CCT diagram made it possible to predict the microstructures of studied steel with different cooling rates.


2014 ◽  
Vol 804 ◽  
pp. 281-284
Author(s):  
Yuan She ◽  
Zhao Hui Zhang ◽  
Jian Tao Ju ◽  
Bo Jin

The continuous cooling phase transformation behavior of niobium microalloyed steel was studied by Thermecmastor-Z thermomechanical simulator; the continuous cooling transformation curves (CCT) were established. The change of microstructure under different cooling rates was observed, and the influence of deformation in austenite non-recrystallization region on transformation was discussed. Based on these work, it was possible to know that the phase transformation is retarded and the ferritic grain is refined dramatically as the cooling rate increasing. The deformation in austenite non-recrystallization region caused deformation stored-energy, which improved the grain refinement of transformation to some extent, but not significant.


2011 ◽  
Vol 228-229 ◽  
pp. 72-76
Author(s):  
J. H. Yang ◽  
Q. Y. Liu

Deformation dilatometry has been used to simulate controlled hot rolling followed by controlled cooling of a Nb microalloyed pipeline steels, the microstructure and transformation characteristics in the steel and the effect of deformation on transformation are studied. According to the results of both dilatometry measurements and microstructure observations, the continuous cooling transformation curves (CCT) of the tested steels are constructed. The results show that Nb content and deformation enhance the formation of acicular ferrite; the microstructure of the steel range from PF, QF to AF with increasing of cooling rates from 0.5 to 50°C /s in a two stages controlled rolling and the microstructure revolution is sensitive to cooling rates when it is lower than 5°C /s, however, when the cooling rate increasing further, the microstructure didn’t change very much but M/A constituents in matrix is refined and dispersed.


2016 ◽  
Vol 850 ◽  
pp. 916-921
Author(s):  
Pei Pei Xia ◽  
Liu Qing Yang ◽  
Xiao Jiang Guo ◽  
Ye Zheng Li

The microstructural evolution of the high Nb X80 pipeline steel in Continuous Cooling Transformation (CCT) by Gleeble-3500HS thermal mechanical simulation testing system was studied, the corresponding CCT curves were drawn and the influence of some parameters such as deformation and cooling rate on microstructure of high Nb X80 pipeline steel was analyzed. The results show that as cooling rate increased, the phase transformation temperature of high Nb X80 steel decreased, with the microstructure transformation from ferrite-pearlite to acicular ferrite and bainite-ferrite. When cooling rate was between 20°C/s and 30°C/s, the microstructure was comparatively ideal acicular ferrite, thermal deformation accelerates phase transformation notably and made the dynamic CCT curves move upward and the initial temperature of phase transformation increase obviously. Meanwhile the thermal deformation refined acicular ferrite and extended the range of cooling rate accessible to acicular ferrite.


2020 ◽  
Vol 835 ◽  
pp. 58-67
Author(s):  
Mohammed Ali ◽  
Antti J. Kaijalainen ◽  
Jaakko Hannula ◽  
David Porter ◽  
Jukka I. Kömi

The effect of chromium content and prior hot deformation of the austenite on the continuous cooling transformation (CCT) diagram of a newly developed low-carbon bainitic steel has been studied using dilatometer measurements conducted on a Gleeble 3800 simulator with cooling rates ranging from 2-80 °C/s. After austenitization at 1100 °C, specimens were either cooled without strain or given 0.6 strain at 880 °C prior to dilatometer measurements. The resultant microstructures have been studied using laser scanning confocal microscopy, scanning electron microscopy and macrohardness measurements. CCT and deformation continuous cooling transformation (DCCT) diagrams were constructed based on the dilatation curves, final microstructures and hardness values. Depending on the cooling rate, the microstructures of the investigated steels after cooling from the austenite region consist of one or more of the following microstructural components: lath-like upper bainite, i.e. bainitic ferrite (BF), granular bainite (GB), polygonal ferrite (PF) and pearlite (P). The proportion of BF to GB as well as the hardness of the transformation products decreased with decreasing cooling rate. The cooling rate at which PF starts to appear depends on the steel composition. With both undeformed and deformed austenite, increasing the chromium content led to higher hardenability and refinement of the microstructure, promoting the formation of BF and shifting the ferrite start curve to lower cooling rates. Prior hot deformation shifted the transformation curves to shorter times and higher temperatures and led to a reduction in hardness at the low cooling rates through the promotion of ferrite formation.


2019 ◽  
Vol 944 ◽  
pp. 303-312
Author(s):  
Li Zhang Li ◽  
He Wei ◽  
Lin Lin Liao ◽  
Yin Li Chen ◽  
Hai Feng Yan ◽  
...  

Gear steel is a ferritic steel. In the rolling process, the ideal structure is ferrite + pearlite, and bainite or martensite is not expected. However, due to the high alloy content, the hardenability is good, and the bainite or martensite structure is very likely to be generated upon cooling after rolling. In this paper, phase transformation rules during continuous cooling of 20CrMnTi with and without deformation were studied to guide the avoidance of the appearance of bainite or martensite in steel. A combined method of dilatometry and metallography was adopted in the experiments, and the dilatometer DIL805A and thermo-simulation Gleeble3500 were used. Both dynamic and static continuous cooling transformation (CCT) diagrams were drawn by using the software Origin. The causes of those changes in starting temperature, finishing temperature, starting time and transformation duration in ferrite-pearlite phase transformation were analyzed, and the change in Vickers hardness of samples with different cooling rate was discussed. The results indicate that with different cooling rate, there are three phase transformation zones: ferrite-pearlite, bainite and martensite. Deformation of austenite accelerates the occurrence of transformation obviously and moves CCT curve to left and up direction. When the cooling rate is lower than 1 °C/s, the phases in samples are mainly ferrite and pearlite, which is the ideal microstructure of experimental steel. As the cooling rate increases, starting temperature of ferrite transformation in steel decreases, starting time reduces, transformation duration gradually decreases, and the Vickers hardness of samples increases. Under the cooling rate of 0.5 °C/s, ferrite transformation in deformed sample starts at 751.67 °C, ferrite-pearlite phase transformation lasts 167.9 s, and Vickers hardness of sample is 183.4 HV.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1562
Author(s):  
Zhenglei Tang ◽  
Ran Guo ◽  
Yang Zhang ◽  
Zhen Liu ◽  
Yuezhang Lu ◽  
...  

The expansion curves of the continuous cooling transformation of undercooled austenite of SXQ500/550DZ35 hydropower steel at different heating temperatures and cooling rates were measured by use of a DIL805A dilatometer. Combined with metallography and Vickers hardness measurement, the continuous cooling transformation diagrams (CCT) of the studied steel under two different states were determined. The results show that in the first group of tests, after the hot-rolled specimens were austenitized at 920 °C, when the cooling rate was below 1 °C·s−1, the microstructure was composed of ferrite (F), pearlite (P) and bainite (B). With the cooling rates between 1 °C·s−1 and 5 °C·s−1, the microstructure was mainly bainite, and martensite (M) formed as the cooling rate reached 5 °C·s−1. When the cooling rate was up to 10 °C·s−1, the microstructure was completely martensite and the hardness value increased significantly. In the second group of tests, after the hot-rolled specimens were quenched at 920 °C and then heated at an intercritical temperature of 830 °C, in comparison with the first group of tests, and except for additional undissolved ferrites in each cooling rate range, the other microstructure types were basically the same. Due to the existence of undissolved ferrite, the microstructures of the specimens heated at intercritical temperatures were much finer, and the toughness values at low temperatures were better.


Sign in / Sign up

Export Citation Format

Share Document