Bond Characteristics between ECC (Engineered Cementitious Composites) and GFRP Rebars

2012 ◽  
Vol 602-604 ◽  
pp. 1010-1013
Author(s):  
Yun Cheol Choi

The purpose of this study is to investigate the bond characteristics between ECC(Engineered Cementitious Composites) and GFRP(Glass Fiber Reinforced Polymers) rebars. An experimental study was carried out to investigate the bond-slip properties of the steel and GFRP rebars in ECC which was reinforced with Polyvinyl Alcohol(PVA) fibers. A total of 8 beam specimens, which was designed according to the RILEM guidelines, was tested according to the RILEM guideline. The main objective was evaluating the load versus displacement and load versus slip behavior and the bond strength regarding the influence of the following parameters : concrete type(Normal concrete and fiber reinforced concrete) and bar diameter and type. From the test results, concrete and ECC specimen presented similar behavior for steel reinforced specimen. However, GFRPO reinforced specimen show different behavior with that. Comparative study for test and equations of MC90 was carried out and code provision predicted the bond characteristics conservatively.

2017 ◽  
Vol 63 (4) ◽  
pp. 83-101 ◽  
Author(s):  
S. Ranjith ◽  
R. Venkatasubramani ◽  
V. Sreevidya

Abstract The durability characteristics of Engineered Cementitious Composites (ECC) with various fibers such as polypropylene and glass were investigated in view of developing composites with high resistance to cracking. ECC offer large potential for durable civil infrastructure due to their high tensile strain capacity and controlled micro-crack width. In this study, fibre volume fractions (0.5%, 1%, 1.5%, and 2%) of both polypropylene and glass fibers varied and durability measures such as a rapid chloride penetration test, sorptivity, water absorption, acid attack, and sulphate attack were measured. Increasing the fiber content up to 1.5% improved the durability properties of ECC. The test results indicate that the glass fiber-reinforced Engineered Cementitious Composites have better durability characteristics than polypropylene fiber-reinforced ECC.


2021 ◽  
Author(s):  
Mohamed A. A. Sherir ◽  
Khandaker M. A. Hossain ◽  
Mohamed Lachemi

This paper presents the influence of silica sand, local crushed sand and different supplementary cementing materials (SCMs) to Portland cement (C) ratio (SCM/C) on the flexural fatigue performance of engineered cementitious composites (ECCs). ECC is a micromechanically-based designed high-performance polymer fiber reinforced concrete with high ductility which exhibits strain-hardening and micro-cracking behavior in tension and flexure. The relative high cost remains an obstacle for wider commercial use of ECC. The replacement of cement by SCMs, and the use of local sand aggregates can lower cost and enhance greenness of the ECC. The main variables of this study were: type and size of aggregates (local crushed or standard silica sand), type of SCMs (fly ash “FA” or slag), SCM/cement ratio of 1.2 or 2.2, three fatigue stress levels and number of fatigue cycles up to 1 million. The study showed that ECC mixtures produced with crushed sand (with high volume of fly ash and slag) exhibited strain hardening behavior (under static loading) with deformation capacities comparable with those made with silica sand. Class F-fly ash combined with crushed sand was the best choice (compared to class CI fly ash and slag) in order to enhance the ECC ductility with slag–ECC mixtures producing lowest deflection capacity. FA–ECC mixtures with silica sand developed more damage under fatigue loading due to higher deflection evolution than FA–ECC mixtures with crushed sand.


2021 ◽  
Author(s):  
Mohamed A. A. Sherir ◽  
Khandaker M. A. Hossain ◽  
Mohamed Lachemi

This paper presents the influence of silica sand, local crushed sand and different supplementary cementing materials (SCMs) to Portland cement (C) ratio (SCM/C) on the flexural fatigue performance of engineered cementitious composites (ECCs). ECC is a micromechanically-based designed high-performance polymer fiber reinforced concrete with high ductility which exhibits strain-hardening and micro-cracking behavior in tension and flexure. The relative high cost remains an obstacle for wider commercial use of ECC. The replacement of cement by SCMs, and the use of local sand aggregates can lower cost and enhance greenness of the ECC. The main variables of this study were: type and size of aggregates (local crushed or standard silica sand), type of SCMs (fly ash “FA” or slag), SCM/cement ratio of 1.2 or 2.2, three fatigue stress levels and number of fatigue cycles up to 1 million. The study showed that ECC mixtures produced with crushed sand (with high volume of fly ash and slag) exhibited strain hardening behavior (under static loading) with deformation capacities comparable with those made with silica sand. Class F-fly ash combined with crushed sand was the best choice (compared to class CI fly ash and slag) in order to enhance the ECC ductility with slag–ECC mixtures producing lowest deflection capacity. FA–ECC mixtures with silica sand developed more damage under fatigue loading due to higher deflection evolution than FA–ECC mixtures with crushed sand.


2021 ◽  
Vol 28 (2) ◽  
pp. 54-72
Author(s):  
Abd-al-Salam Al-Hazragi ◽  
Assim Lateef

This article investigates the behaviour of strengthened concrete columns using jacketing ultra-high-performance fiber reinforced concrete (UHPFRC) and carbon fiber-reinforced polymer (CFRP) under uniaxial loaded. The jacket was connected to the column core using shear connectors and (CFRP) fixed as a strip on the tension zone between the column cores and the jacketing. Seven column samples of square cross-section (120 x120) mm at the midsection with overall length of 1250 mm were cast using normal strength concrete (NSC) and having similar longitudinal and transverse reinforcement. The samples were made and tested under axial load at eccentricity equal to 120 mm up to failure. Test parameters were the thickness of jackets (25 and 35) mm and the width of CFRP (0,8, and 12) cm. Column specimens were tested, one of them was reference without any strengthening, and the other specimens divided into two groups (A, and B), and each group included three specimens based on the parameters. Group (A) has UHPFRC jacket thickness 25 mm and CFRP width (0,8, and 12) cm respectively, and group (B) has UHPFRC jacket thickness 35 mm and CFRP width (0,8, and 12) cm respectively. The outcomes of the article show that increasing the thickness of jacket, and width of CFRP lead to increase in the load carrying capacity about (110.5%,168.4%, and 184.2%) for group A, and (157.9%,226.3%, and 263.2%) for group B compared with the reference column due to delay in the appearance of cracks and their distribution. The mid-height lateral displacement of columns was decreased about (66.6%,42.3%, and 35.9%) for group A, and (46.15%,38.46%, and 32.3%) for group B, also the axial deformation of specimens decreased about (71.7%,60.86%, and 55.86%) for group A, and (65.5%,60.5%, and 53.4) for group B compared with the reference column. The ductility of columns that were strengthened with UHPFRC jacket only was increased about (13.67%,19.66%) for thickness(25,35) mm respectively, because of that UHPFRC jacket was contented on steel fibers, and the percentage decrease of ductility was about (5.1%,and 12%) for group (A), (1%,and 9.4%) for group (B) when bonded CFRP in the tension zone with width (8 ,and 12) cm respectively. The results show improvement in the initial and secant stiffness when, increased the thickness of jacket, and width of CFRP because of increase in the size of columns and improvement in the modulus of elasticity. The toughness increase was about (273.97%,301.55%, and 304.5%) for group A, and (453.69%,511.93%, and 524.28%) for group B compared with the reference column because of increase in the size of specimens and delay the appearance of cracks.


Sign in / Sign up

Export Citation Format

Share Document