Numerical Simulation for Precision Roll-Forging of Automobile Front Axle

2012 ◽  
Vol 602-604 ◽  
pp. 1850-1854 ◽  
Author(s):  
Ru Xiong Li ◽  
Song Hua Jiao

Roll forging process for automobile front axle has been simulated by using a rigid viscoplastic finite element method, force-time curve have been obtained and analyzed. On the basis of simulation result, typical characteristics of roll forging process have been explained. It concluded that simulation results could guide the development of roll forging and die design for automobile front axle.

2018 ◽  
Vol 32 (34n36) ◽  
pp. 1840073
Author(s):  
Hui Li ◽  
Yi-Bo Jiang ◽  
Jian-Wen Cai

Azimuthal electromagnetic wave logging-while-drilling (LWD) technology can detect weak electromagnetic wave signal and realize real-time resistivity imaging. It has great values to reduce drilling cost and increase drilling rate. In this paper, self-adaptive hp finite element method (FEM) has been used to study the azimuthal resistivity LWD responses in different conditions. Numerical simulation results show that amplitude attenuation and phase shift of directional electromagnetic wave signals are closely related to induced magnetic field and azimuthal angle. The peak value and polarity of geological guidance signals can be used to distinguish reservoir interface and achieve real-time geosteering drilling. Numerical simulation results also show the accuracy of the self-adaptive hp FEM and provide physical interpretation of peak value and polarity of the geological guidance signals.


2015 ◽  
Vol 1096 ◽  
pp. 417-421
Author(s):  
Pei Luan Li ◽  
Zi Qian Huang

By the use of finite element method, this paper predicts the effects of the shapes of reinforcements with different ductility (Co) on the effective elastic response for WC-Co cemented carbide. This paper conducts a comparative study on the material properties obtained through theoretical model, numerical simulation and experimental observations. Simulation results indicate that the finite element method is more sophisticated than the theoretical prediction.


2013 ◽  
Vol 457-458 ◽  
pp. 23-27
Author(s):  
Xue Ping Zhan ◽  
Kuan Jun Zhu ◽  
Cao Lan Liu ◽  
Bin Liu ◽  
Jun Zhang ◽  
...  

The models of the multi-bundled conductors are constructed by finite element method in this paper. The numerical results are given by using the 4th order Runge-Kutta method considering aerodynamic parameter of sub-conductor. The simulation results are obtained on galloping of quad bundle conductors with the different span. Thus some effective numerical results of quad twin bundle conductor can provide a useful reference for anti-galloping design.


2011 ◽  
Vol 474-476 ◽  
pp. 251-254
Author(s):  
Jian Jun Wu ◽  
Wei Liu ◽  
Yu Jing Zhao

The multi-step forward finite element method is presented for the numerical simulation of multi-step sheet metal forming. The traditional constitutive relationship is modified according to the multi-step forming processes, and double spreading plane based mapping method is used to obtain the initial solutions of the intermediate configurations. To verify the multi-step forward FEM, the two-step simulation of a stepped box deep-drawing part is carried out as it is in the experiment. The comparison with the results of the incremental FEM and test shows that the multi-step forward FEM is efficient for the numerical simulation of multi-step sheet metal forming processes.


Sign in / Sign up

Export Citation Format

Share Document