Simulation Study and Optimization of Process Parameters in Precision Forming of the Nut Plate

2012 ◽  
Vol 602-604 ◽  
pp. 1878-1882
Author(s):  
Xiang Bei Wang ◽  
Duo Nian Yu ◽  
Hong Yan Chang

For researching the stress and strain field distribution and the effect of process parameters on forming quality in the precision forming process of mid-thick nut plate, this paper builds the nut plate 3d parts of precise forming finite element entity model in ABAQUS software, and then uses Johnson-cook model to describe the material constitutive relationship and metal material damage and fracture. The ALE adaptive technology has been used to control material large deformation in finite-element analysis of elastic-plastic. Based on this model, this paper analyzes the stress and strain field distribution,average pressure stress distribution and metal material plastic flow rates distribution, and the influence of the process parameters on the forming quality in the forming process.

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 166
Author(s):  
Jiansheng Xia ◽  
Jun Zhao ◽  
Shasha Dou

There are many typical symmetric large plastic deformation problems in aluminum alloy stamping. Warm stamping technology can improve the formability of materials and obtain parts with high-dimensional accuracy. Friction behavior in the stamping process is significant for the forming quality. An accurate friction coefficient is helpful in improving the prediction accuracy of forming defects. It is hard to obtain a unified and precise friction model through simple experiments due to the complicated contact conditions. To explore the effect of friction behavior on the forming quality, warm friction experiments of the AA6061 aluminum alloy and P20 steel with different process parameters were carried out using a high-temperature friction tester CFT-I (Equipment Type), including temperatures, the interface load, and sliding speeds. The variation curves of the friction coefficient with various parameters were obtained and analyzed. The results show that the friction coefficient increases with temperature and decreases with the sliding speed and load. Then, the influences of process parameters on the surface morphology of the samples after friction were observed by an optical microscope; adhesive wear occurred when the temperature increased, and the surface scratch increased and deepened with the increase in the load. Finally, the friction coefficient models of the speed and load were established by analyzing the data with Original software. Compared with the experimental and the finite element analysis results of the symmetrical part, the errors of the velocity friction model in thickness and springback angle are less than 4% and 5%, respectively. The mistakes of the load friction model are less than 6% and 7%, respectively. The accuracy of the two friction models is higher than that of the constant friction coefficient. Therefore, those coefficient models can effectively improve the simulation accuracy of finite element software.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 337 ◽  
Author(s):  
Jian Xing ◽  
Yan-yan Cheng ◽  
Zhuo Yi

To improve the effect of multi-point stretch forming of sheet metal, it is proposed in this paper to replace a fixed ball head with a swinging ball head. According to the multi-point dies with different arrangements, this research establishes finite element models of the following stretch forming, i.e., fixed ball heads with conventional arrangement, swinging ball heads with conventional arrangement, swinging ball heads with declining staggered arrangement, and swinging ball heads with parallel staggered arrangement, and then numerical simulation is performed. The simulation results show that by replacing a fixed ball head with a swinging ball head, the surface indentation of the part formed was effectively suppressed, the stress and tension strain distribution of the part formed was improved, and the forming quality was improved; the thickness of the elastic pad was reduced, the springback was reduced and the forming accuracy was improved; and when the ball head was applied to a multi-point die with staggered arrangement, a better forming result was achieved, where the best forming result was achieved in combining the swinging ball heads with the multi-point die with a parallel staggered arrangement. Forming experiments were carried out, and the experimental results were consistent with the trend of numerical simulation results, which verified the correctness of the numerical simulation.


2011 ◽  
Vol 675-677 ◽  
pp. 921-924 ◽  
Author(s):  
Ming Wei Wang ◽  
Chun Yan Wang ◽  
Li Wen Zhang

Vacuum hot bulge forming (VHBF) is becoming an increasingly important manufacturing process for titanium alloy cylindrical workpiece in the aerospace industries. Finite element simulation is an essential tool for the specification of process parameters. In this paper, a two-dimensional nonlinear thermo-mechanical couple FE model was established. Numerical simulation of vacuum hot bulge forming of titanium alloy cylindrical workpiece was carried out using FE analysis software MSC.Marc. The effects of process parameter on vacuum hot bulge forming of BT20 titanium alloy cylindrical workpiece was analyzed by numerical simulation. The proposed an optimized vacuum hot bulge forming process parameters and die size. And the corresponding experiments were carried out. The simulated results agreed well with the experimental results.


Author(s):  
John Martin

The pilger process is a cold-worked mechanical process that combines the elements of extrusion, rolling, and upsetting for the formation of thin-walled tubes. This complex manufacturing process relies on the results of trial and error testing programs, experimental parameter sensitivity studies, and prototypical applications to advance the technology. This finite element modelling effort describes the methods, models, and assumptions used to assess the process parameters used to manufacture thin-walled tubing. The modelling technique breaks down the manufacturing process into smaller computer generated models representing fundamental process functions. Each of these models is linked with the overall process simulation. Simplified assumptions are identified and supporting justifications provided. This work represents proof of principle modelling techniques, using large deformation, large strain, finite element software. These modelling techniques can be extended to more extensive parameter studies evaluating the effects of pilger process parameter changes on final tube stress and strain states and their relationship to defect formation/propagation. Sensitivity studies on input variables and the process parameters associated with one pass of the pilger process are also included. The modelling techniques have been extended to parameter studies evaluating the effects of pilger process parameter changes on tube stress and strain states and their relationship to defect formation. Eventually a complex qualified 3-D model will provide more accurate results for process evaluation purposes. However, the trends and results reported are judged adequate for examining process trends and parameter variability.


2014 ◽  
Vol 722 ◽  
pp. 140-146
Author(s):  
Wen Juan Zhang ◽  
Long Wu ◽  
Gang Chen

In this paper the drawing process of Box-torque was simulated by Dynaform, which is FEM simulation software. The process parameters, which affected the quality of forming, were optimized by finite element simulation. The emphasis was focus on the optimization of draw-bead and BHF and data were summarized from the optimization graphs. In this simulation, lengthways draw-bead was set on the technical face for reducing or eliminating wrinkle. It was innovation difference from the usual that the draw-bead was set on binder. Finally the correctness of simulation was approved by comparing the optimization of simulation with the data of experimentation.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Fayuan Zhu ◽  
Zhaohui Wang ◽  
Mi Lv

In order to control the precision forging forming quality and improve the service life of die, a multiobjective optimization method for process parameters design was presented by applying Latin hypercube design method and response surface model approach. Meanwhile the deformation homogeneity and material damage of forging parts were proposed for evaluating the forming quality. The forming load of die was proposed for evaluating the service life of die. Then as a case of study, the radial precision forging for a hollow shaft with variable cross section and wall thickness was carried out. The 3D rigid-plastic finite element (FE) model of the hollow shaft radial precision forging was established. The multiobjective optimization forecast model was established by adopting finite element results and response surface methodology. Nondominated sorting genetic algorithm-II (NSGA-II) was adopted to obtain the Pareto-optimal solutions. A compromise solution was selected from the Pareto solutions by using the mapping method. In the finite element study on the forming quality of forging parts and the service life of dies by multiobjective optimization process parameters, the feasibility of the multiobjective optimization method presented by this work was verified.


2013 ◽  
Vol 670 ◽  
pp. 101-105 ◽  
Author(s):  
Jin Hui Liu ◽  
W.J. Xie ◽  
C. Zhao ◽  
L. Zhang ◽  
Z.L. Lu

Generally, pressures resulted from roller during leveling process in selective laser sintering has the effect of densification of powder materials. But extra frictions due to them become the forces which always deteriorate the surface of the part and mark it with several lines trace. Sometimes, the manufacturing can even not continue if these forces accumulate to a large extent to move the whole part. Therefore, the whole forming process will be obliged to stop owing to the displacement of part from above mentioned damage. In this work, the emerging reason and related variation factors of these forces were studied mathematically, the mathematical and physical model of friction force was also built to describe the connections between the leveling process parameters and them. How to control the influence factor of friction to abate their damages to surfaces and promote the forming quality were also discussed based on these models. This will provide a common reference for the application of selective laser sintering technology.


2011 ◽  
Vol 314-316 ◽  
pp. 554-557
Author(s):  
Jian Ping Wang ◽  
Cheng Long Liu ◽  
Peng Lu ◽  
Fu Gui Ma

Taking a company’s automotive panel drawing die as an example, this paper numerically simulates the process of drawing forming based on finite element analysis (FEA) software ANSYS, the design rationality of die structure is analyzed combining distribution characteristics of stress and strain, the paper also proposes feasible improvment measures according simulation analysis to optimize the structure of drawing die. The study result shows that analysis results based on ANSYS can forecast defect and failure regions in the forming process of automotive panel drawing die, optimize the design of drawing die, prolong the die life effectively, and reduce production cost.


Sign in / Sign up

Export Citation Format

Share Document