Research on Magneto-Rheological Torque Servo Devices

2012 ◽  
Vol 605-607 ◽  
pp. 1488-1491
Author(s):  
Guo Fa Li ◽  
Ming Zuo Han ◽  
Cui Yun Shan ◽  
Jia Liu ◽  
Jun Xiang Yang

The dual characteristic of magnetorheological rheology and phase transitions is studied and its rheological principle is also described. By using the ANSYS finite element method, a simulation analysis of the torque transmission model is conducted. By selecting the magnetorheological fluid SG-MRF2035, a magneto-rheological torque servo device prototype (Gap of 1.5mm) is developed. And a performance testing platform is built for the torque output characteristics of prototype. The test results show that the device could provide supple output torque and the torque is continuously adjustable. This paper provides a new way for the wide application of magnetorheological fluids.

2011 ◽  
Vol 130-134 ◽  
pp. 2724-2728
Author(s):  
Jin Qiang Du ◽  
Yu Ting He ◽  
Hua Ding ◽  
Li Ming Wu ◽  
Qing Shao

Finite element models of an eddy current sensor array are built up by electromagnetic-circuit couple method, and the influences of conformable substrate on sensor’s output characteristics are analyzed by those models. It is shown that the model contains the conformable substrate has almost the same output characteristics as the model without it, but the output amplitudes and phases of the former model are higher than the latter. Therefore we can simply the sensor as a single surface to facilitate the analysis, and then revise it to fit to the real sensor.


2011 ◽  
Vol 299-300 ◽  
pp. 1072-1077
Author(s):  
Jin Qiang Du ◽  
Yu Ting He ◽  
Hua Ding ◽  
Hai Wei Zhang ◽  
Li Ming Wu

A finite element model of an eddy current sensor array is built up by electromagnetic-circuit couple method, and the influences of crack length and frequency on sensor’s output characteristics are analyzed by this model. It is shown that the model established in this paper is reasonable. There would be a change on amplitude and phase when a crack appears below the footprint of sensing coil in metal plane, and the amplitude and phase of sensor coil are increasing gradually as crack propagation. As frequency increased, the differences between the sensing coils’ output become obvious. However, the differences begin decreasing while the frequency above 3MHz approximately. These results will provide a reference for further research and application of the sensor.


2012 ◽  
Vol 233 ◽  
pp. 84-87
Author(s):  
Jiu Hua Wang ◽  
Lian Cheng Ren ◽  
Zhen Zhen Lei

A magneto-rheological (MR) fan clutch is a device that transmits torque by the shear stress of the MR fluids. In this paper, Bingham model is used to describe the constitutive characteristics of MR fluids subject to an applied magnetic field. The operational principle of the MR clutch is introduced. The torque transmitted by MR fluids is analyzed to compute the torque transmission ability in the MR clutch. The results show that with the increase of the applied magnetic field, the torque developed by MR fluids goes up rapidly.


2003 ◽  
Author(s):  
Andrea C. Wray ◽  
Francis B. Hoogterp ◽  
Scott Garabedian ◽  
Eric Anderfaas ◽  
Brian Hopkins

1999 ◽  
Author(s):  
Mehdi Ahmadian ◽  
James C. Poynor ◽  
Jason M. Gooch

Abstract This study will examine the effectiveness of magneto-rheological (MR) dampers for controlling shock dynamics. Using a system that includes a 50-caliber rifle and a magneto-rheological damper, it is experimentally shown that MR dampers can be quite effective in controlling the compromise that commonly exists between shock forces and strokes across the shock absorber mechanism. A series of tests are conducted to demonstrate that different damping forces by the MR damper can result in different shock-force/stroke profiles. The test results further show that MR dampers can be used in a closed-loop system to adjust the shock loading characteristics in a manner that fits the dynamic system constraints and requirements.


2017 ◽  
Vol 11 (1) ◽  
pp. 244-257 ◽  
Author(s):  
Xingyou Yao

Background: Cold-formed steel structural sections used in the walls of residential buildings and agricultural facilities are commonly C-shaped sections with web holes. These holes located in the web of sections can alter the elastic stiffness and the ultimate strength of a structural member. The objective of this paper is to study the buckling mode and load-carrying capacity of cold-formed thin-walled steel column with slotted web holes. Methods: Compression tests were conducted on 26 intermediate length columns with and without holes. The tested compressive members included four different kinds of holes. For each specimen, a shell finite element Eigen-buckling analysis and nonlinear analysis were also conducted. The influence of the slotted web hole on local and distortional buckling response had also been studied. The comparison on ultimate strength between test results and calculated results using Chinese cold-formed steel specification GB50018-2002, North American cold-formed steel specification AISI S100-2016, and nonlinear Finite Element method was made. Result: Test results showed that the distortional buckling occurred for intermediate columns with slotted holes and the ultimate strength of columns with holes was less than that of columns without holes. The ultimate strength of columns decreased with the increase in transverse width of hole in the cross-section of member. The Finite element analysis results showed that the web holes could influence on the elastic buckling stress of columns. The shell finite element could be used to model the buckling modes and analysis the ultimate strength of members with slotted web holes. The calculated ultimate strength shows that results predicted with AISI S100-2016 and analyzed using finite element method are close to test results. The calculated results using Chinese code are higher than the test results because Chinese code has no provision to calculate the ultimate strength of members with slotted web holes. Conclusion: The calculated method for cold-formed thin-walled steel columns with slotted web holes are proposed based on effective width method in Chinese code. The results calculated using the proposed method show good agreement with test results and can be used in engineering design for some specific cold-formed steel columns with slotted web holes studied in this paper.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012073
Author(s):  
Dandan Shi ◽  
Xing Qin ◽  
Hao Qu

Abstract Based on the principle of benefiting the durability of concrete, machined sand is used to configure C40 flow concrete, and the engineering application environment and economy are considered. In this paper, the author through the flow state concrete mix ratio design, give the raw material dosage, concrete mixing, finally combined with the workability measurement method, five groups of concrete mix performance testing. According to the test results, the influence of mineral admixture and water reducing agent on the workability of concrete mixture is studied and analyzed, and the reasonable admixture dosage and water reducing rate of water reducing agent and its admixture dosage are finally given.


Sign in / Sign up

Export Citation Format

Share Document