Design and Operation Prediction of Groundwater Heat Pump

2012 ◽  
Vol 608-609 ◽  
pp. 983-986
Author(s):  
Xiao Qiong Deng

This article based on a large-scale water source heat pump engineering in a city of China, according to the experiment and survey of pumping site as well as hydrogeological parameters combined with the building load requirements, the design scheme of cluster wells pumping and injection was given. A numerical simulation was also done in order to analyze and forecast the temperature changes in aquifer and thermal breakthrough, well group interference problems for the next 3 years. Moreover an experience equation about change of average temperature of water source heat pump wells was got which will provide reference for design and operation of GWHP for others.

2014 ◽  
Vol 670-671 ◽  
pp. 1016-1022
Author(s):  
Bing Hua Li ◽  
Xiao Juan Cao ◽  
Li Cai Liu ◽  
Fan Dong Zheng ◽  
Ni Zhang

Groundwater heat pump (GWHP) systems in three different hydrogeological fields, Beijing were selected, and their effects on temperature of groundwater in recharged aquifer were researched for three years. Results showed that the degree of thermal breakthrough was controlled by the distance between pumping wells and injection wells, and the temperature of groundwater with high flow rate can recover to normal faster than those with low flow rate. When distance between pumping wells and injection wells were shorter than 30m, thermal breakthrough may happen and the variation range of groundwater temperature during one heating or cooling period was 8~12°C.However, thermal breakthrough can be negligible and the temperature of groundwater may be steady when the distance between those wells was longer than 50m. Furthermore, GWHP in two different hydrogeological fields were selected to observe their effects on groundwater quality for one year. One GWHP was situated on the northwest piedmont alluvial fan of Beijing and the other was located in the southeast plain area of Beijing. Groundwater was sampled from those fields and thirty-two inorganic components were analyzed. Heavy metals were not detected, and calcium, magnesium, chloride, sulfate, fluoride and other ten inorganic components were studied. Groundwater quality in the northwest of Beijing was relatively steady because that aquifer was in relative oxidation environment. However, groundwater quality in the southeast of Beijing was subject to change because that aquifer was in relative reduction environment. Nitration reaction happened in the plain area, and ammonia, nitrite converted into nitrite nitrogen and nitrate nitrogen, respectively. Simultaneously, pH, concentrations of iron and manganese decreased, and total hardness increased.


2011 ◽  
Vol 368-373 ◽  
pp. 3853-3856
Author(s):  
Jin Mei Feng ◽  
Jian Min Gao ◽  
Paul Woods

The maximum installed capacity mathematic model has been set up and analysis about surface water source heat pump using at large scale. The maximum installed capacity of Nu River China has been calculated by the equations as an example. In the mean time, the key coefficients have been simplified while practical application in engineering. A general conclusion of the maximum water source heat pump installed capacity has obtained for different surface water characteristic. The value from the general conclusion can use in the plan and the layout on the surface water source heat pump system large-scale use. That will protect ecological environment and against creates the destruction.


2012 ◽  
Vol 204-208 ◽  
pp. 4225-4228
Author(s):  
Xiao Chen ◽  
Jie Han ◽  
Jing Zeng

The heating source of a district heating (DH) system in Beijing was reformed from coal boilers to a groundwater heat pump (GWHP) system and a sewage source heat pump (SSHP) system. This study aims to evaluate the actual performance and benefits of two water-source heat pump systems. We found total energy savings and primary energy saving rate due to the retrofit to be 950 tons of standard coal equivalent (TCE) every year and 34.6%, respectively. Field test results indicated the necessity of system performance improvement. Appropriate approaches to improve the system performance were discussed.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ke Zhu ◽  
Yifan Zeng ◽  
Qiang Wu ◽  
Shengheng Xu ◽  
Kun Tu ◽  
...  

Although buildings are often heated and cooled by single-well circulation coupled groundwater heat pump systems, few studies have evaluated the long-term performance of these systems. Therefore, the present study investigated the performance of these systems by analyzing the efficiency and energy consumption using 4 years of operating data. The results indicate that the coefficient of performance (COP) of the system gradually decreases because of thermal breakthrough or an accumulation of cold. In addition, the sealing clapboards could effectively slow down thermal breakthrough. In addition, compared with the heating period, the COP of the heat pump unit (HPU) and system increases, and its energy consumption decreases in the cooling period. It was also found that partial heat loss occurs when water from the single-well circulation outlet penetrates the main pipeline. Moreover, the heat-exchange efficiency of a single HPU exceeds that of multiple HPUs, and the COP of a HPU decreases during operation with increasing indoor temperature. Accordingly, we improved the performance of system by increasing the underground heat storage. Herein, we focus on optimizing the system design during long-term operation, which includes taking steps such as lengthening the sealing clapboards, using insulated pipes, discharging the remaining water and adding intelligent control devices.


2014 ◽  
Vol 672-674 ◽  
pp. 379-385
Author(s):  
Bing Hua Li ◽  
Xiao Juan Cao ◽  
Li Cai Liu ◽  
Fan Dong Zheng ◽  
Ni Zhang

Groundwater heat pump (GWHP) systems in three different hydrogeological fields, Beijing were selected, and their effects on temperature of groundwater in recharged aquifer were researched for three years. Results showed that the degree of thermal breakthrough was controlled by the distance between pumping wells and injection wells, and the temperature of groundwater with high flow rate can recover to normal faster than those with low flow rate. When distance between pumping wells and injection wells were shorter than 30m, thermal breakthrough may happen and the variation range of groundwater temperature during one heating or cooling period was 8~12°C.However, thermal breakthrough can be negligible and the temperature of groundwater may be steady when the distance between those wells was longer than 50m. Furthermore, GWHP in two different hydrogeological fields were selected to observe their effects on groundwater quality for one year. One GWHP was situated on the northwest piedmont alluvial fan of Beijing and the other was located in the southeast plain area of Beijing. Groundwater was sampled from those fields and thirty-two inorganic components were analyzed. Heavy metals were not detected, and calcium, magnesium, chloride, sulfate, fluoride and other ten inorganic components were studied. Groundwater quality in the northwest of Beijing was relatively steady because that aquifer was in relative oxidation environment. However, groundwater quality in the southeast of Beijing was subject to change because that aquifer was in relative reduction environment. Nitration reaction happened in the plain area, and ammonia, nitrite converted into nitrite nitrogen and nitrate nitrogen, respectively. Simultaneously, pH, concentrations of iron and manganese decreased, and total hardness increased.


2011 ◽  
Vol 403-408 ◽  
pp. 2636-2639
Author(s):  
Hao Liang ◽  
Wei Ding Long

This paper gives the detail introduction of community energy planning method based on integrated resouces planning and applied it in Shanghai Expo Park, finally got the optimized energy option based on a comprehensive system of river water source heat pump. The main works included thermal load estimation, optimum pipework radius of district cooling system, the impacts of large-scale river water source heat pump (RWSHP) on the River water environment and the comparison of the energy performance of RWSHP with other district energy systems. Energy saving and carbon emission mitigation benefits of the program were also calculated.


2012 ◽  
Vol 433-440 ◽  
pp. 1178-1182 ◽  
Author(s):  
Ning Jin ◽  
Sheng Fei Li

Along with our country economic development fast development, construction energy consumption large scale growth, constructs the energy consumption to occupy the national energy consumption about 25%, therefore the energy consumption question becomes the national economy society to continue the healthy development now the subject matter. The development renewable energy source resources, reduce the energy consumption vigorously, slows down the global climate warming, protects the ecological environment, advances the human society sustainable development together, has become now the social development significant strategic plan. This article take the river water source and the place source heat pump as the example, the use river water source and the place source heat pump integration application energy conservation technology to the construction heating, the refrigeration. Through to this integrative system's analysis, obtained the river water source and the place source heat pump integration application energy conservation and the environmental protection performance.


1988 ◽  
Vol 20 (3) ◽  
pp. 133-140 ◽  
Author(s):  
Annika Lindblad-Påsse

A number of groundwater heat pump systems have been investigated to determine the extent of problems caused by the chemistry of the groundwater used. The main purpose was to investigate sites using iron rich groundwater. Fifteen facilities were studied regularly for three years. Ten of these facilities had some kind of problem caused by iron precipitation. Four of the sites were rebuilt because of severe plugging due to iron sludge in wells, pumps and pipes. In all facilities with severe problems, iron bacteria were found. Low redox potential, indicated by hydrogen sulphide in the groundwater, seems to protect from iron bacteria. In some of the systems using groundwater with H2S the problems were corrosion and sludge formation caused by sulphur oxidizing bacteria. Rapid clogging was caused by aeration of the groundwater due to improper design of the system. Knowledge of the water composition, design of the systems to minimize aeration, and control of clogging turned out to be important factors to maintain operation safety.


2015 ◽  
Vol 8 (1) ◽  
pp. 38-42
Author(s):  
Pengfei Si ◽  
Xiangyang Rong ◽  
Angui Li ◽  
Xiaodan Min ◽  
Zhengwu Yang ◽  
...  

As a realization of the energy cascade utilization, the regional energy system has the significant potential of energy saving. As a kind of renewable energy, river water source heat pump also can greatly reduce the energy consumption of refrigeration and heating system. Combining the regional energy and water source heat pump technology, to achieve cooling, heating and power supply for a plurality of block building is of great significance to reduce building energy consumption. This paper introduces a practical engineering case which combines the regional energy system of complex river water source heat pump, which provides a detailed analysis of the hydrology and water quality conditions of the river water source heat pump applications, and discusses the design methods of water intake and drainage system. The results show that the average temperature of cold season is about 23.5 °C, the heating season is about 13.2 °C; the abundant regional water flow can meet the water requirement of water source heat pump unit; the sediment concentration index cannot meet the requirement of river water source heat pump if the water enters the unit directly; the river water chemistry indicators (pH, Cl-, SO42-, total hardness, total iron) can meet the requirement of river water source heat pump, and it is not required to take special measures to solve the problem. However, the problem of sediment concentration of water must be solved.


2012 ◽  
Vol 66 (5) ◽  
pp. 1103-1109 ◽  
Author(s):  
Zenghu Qin ◽  
Mingwei Tong ◽  
Lin Kun

Due to the surface water in the upper reaches of Yangtze River in China containing large amounts of silt and algae, high content of microorganisms and suspended solids, the water in Yangtze River cannot be used for cooling a heat pump directly. In this paper, the possibility of using Yangtze River, which goes through Chongqing, a city in southwest China, as a heat source–sink was investigated. Water temperature and quality of the Yangtze River in the Chongqing area were analyzed and the performance of water source heat pump units in different sediment concentrations, turbidity and algae material conditions were tested experimentally, and the water quality standards, in particular surface water conditions, in the Yangtze River region that adapt to energy-efficient heat pumps were also proposed. The experimental results show that the coefficient of performance heat pump falls by 3.73% to the greatest extent, and the fouling resistance of cooling water in the heat exchanger increases up to 25.6% in different water conditions. When the sediment concentration and the turbidity in the river water are no more than 100 g/m3 and 50 NTU respectively, the performance of the heat pump is better, which can be used as a suitable river water quality standard for river water source heat pumps.


Sign in / Sign up

Export Citation Format

Share Document