Parameter Inversion of Tritium Migration Based on Parallel Genetic Algorithm

2012 ◽  
Vol 610-613 ◽  
pp. 1883-1888
Author(s):  
Yuan Cao ◽  
Wen Ke Wang ◽  
Tie Liang Wang ◽  
Ying Jie Wang

To calibrate model parameters of tritium migration in a test site of China, an intelligent parameter inversion model based on parallel genetic algorithm is built, a forward and inverse coupling program of radionuclide migration is designed, and the values of key parameters like hydraulic conductivity, dispersity and porosity are inverted automatically on a mainframe computer, by means of abundant observation data of tritium concentration. The inversion results accord with observation data well on the whole. Compared to manual adjustment method, this method has better overall convergence, higher calculated precision and efficiency, and less manpower cost. The results show that parallel genetic algorithm is feasible and valid in application to parameter inversion of tritium migration.

2015 ◽  
Vol 52 (9) ◽  
pp. 1360-1373 ◽  
Author(s):  
Valentin S. Gischig ◽  
Oldrich Hungr ◽  
Andrew Mitchell ◽  
Franck Bourrier

The use of dynamic computational methods has become indispensable for addressing problems related to rockfall hazard. Although a number of models with various degrees of complexity are available, model parameters are rarely calibrated against observations from rockfall experiments. A major difficulty lies in reproducing the apparent randomness of the impact process related to both ground and block irregularities. Calibration of rigorous methods capable of explicitly modeling trajectories and impact physics of irregular blocks is difficult, as parameter spaces become too vast and the quality of model input and observation data are insufficient. The model presented here returns to the simple “lumped-mass” approach and simulates the characteristic randomness of rockfall impact as a stochastic process. Despite similarities to existing approaches, the model presented here incorporates several novel concepts: (i) ground roughness and particle roughness are represented as a random change of slope angle at impact; (ii) lateral deviations of rebound direction from the trajectory plane at impact are similarly accounted for by perturbing the ground orientation laterally, thus inducing scatter of run-out directions; and (iii) a hyperbolic relationship connects restitution factors to impact deformation energy. With these features, the model is capable of realistically accounting for the influence of particle mass on dynamic behaviour. The model only requires four input parameters, rendering it flexible for calibration against observed datasets. In this study, we calibrate the model against observations from the rockfall test site at Vaujany in France. The model is able to reproduce observed distributions of velocity, jump heights, and runout at observation points. In addition, the spatial distribution of the trajectories and landing points has been successfully simulated. Different parameter sets have been used for different ground materials such as an avalanche channel, a forest road, and a talus cone. Further calibration of the new model against a range of field datasets is essential. This study is part of an extensive calibration program that is still in progress at this first presentation of the method, and focuses on fine-tuning the details of the stochastic process implemented both in two-dimensional (2D) and three-dimensional (3D) versions of the model.


Author(s):  
M. Y. Jiang ◽  
X. J. Fan ◽  
Y. X. Zhou ◽  
J. Lian ◽  
J. Q. Jiang ◽  
...  

1996 ◽  
Vol 33 (2) ◽  
pp. 79-90 ◽  
Author(s):  
Jian Hua Lei ◽  
Wolfgang Schilling

Physically-based urban rainfall-runoff models are mostly applied without parameter calibration. Given some preliminary estimates of the uncertainty of the model parameters the associated model output uncertainty can be calculated. Monte-Carlo simulation followed by multi-linear regression is used for this analysis. The calculated model output uncertainty can be compared to the uncertainty estimated by comparing model output and observed data. Based on this comparison systematic or spurious errors can be detected in the observation data, the validity of the model structure can be confirmed, and the most sensitive parameters can be identified. If the calculated model output uncertainty is unacceptably large the most sensitive parameters should be calibrated to reduce the uncertainty. Observation data for which systematic and/or spurious errors have been detected should be discarded from the calibration data. This procedure is referred to as preliminary uncertainty analysis; it is illustrated with an example. The HYSTEM program is applied to predict the runoff volume from an experimental catchment with a total area of 68 ha and an impervious area of 20 ha. Based on the preliminary uncertainty analysis, for 7 of 10 events the measured runoff volume is within the calculated uncertainty range, i.e. less than or equal to the calculated model predictive uncertainty. The remaining 3 events include most likely systematic or spurious errors in the observation data (either in the rainfall or the runoff measurements). These events are then discarded from further analysis. After calibrating the model the predictive uncertainty of the model is estimated.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
K. Nowak ◽  
A.F. Żarnecki

Abstract One of the important goals at the future e+e− colliders is to measure the top-quark mass and width in a scan of the pair production threshold. However, the shape of the pair-production cross section at the threshold depends also on other model parameters, as the top Yukawa coupling, and the measurement is a subject to many systematic uncertainties. Presented in this work is the study of the top-quark mass determination from the threshold scan at CLIC. The most general approach is used with all relevant model parameters and selected systematic uncertainties included in the fit procedure. Expected constraints from other measurements are also taken into account. It is demonstrated that the top-quark mass can be extracted with precision of the order of 30 to 40 MeV, including considered systematic uncertainties, already for 100 fb−1 of data collected at the threshold. Additional improvement is possible, if the running scenario is optimised. With the optimisation procedure based on the genetic algorithm the statistical uncertainty of the mass measurement can be reduced by about 20%. Influence of the collider luminosity spectra on the expected precision of the measurement is also studied.


Sign in / Sign up

Export Citation Format

Share Document