Preparation of Nanostructured Ag/CeO2 by Microwave Synthesis and its Photocatalysis Activity

2012 ◽  
Vol 624 ◽  
pp. 88-93 ◽  
Author(s):  
En Lei Qi ◽  
Ben Niu ◽  
Shi Lei Zhang ◽  
Jie Qiang Wang

CeO2 nanobundles were obtained by the microwave homogeneous precipitation method using cerium nitrate and urea as raw materials. Ag nanoparticles were obtained by the microwave solvolthermal method using silver nitrate, PVP and ethanol as raw materials. Nanostructured Ag/CeO2 was prepared by the impregnation method. The products were characterized by X-ray diffraction, SEM, TEM, UV-vis spectrum, BET. The photocatalytic properties of CeO2 and Ag/CeO2 nanomaterials were evaluated by degradation of methyl orange. The results show that the photocatalytic degradation of modified cerium oxide modified by nano silver on methyl orange is significantly improved. For the Ag (0.1 wt%)/CeO2 material, the degradation rate on methyl orange is up to 83.2% under visible light irradiation for 1h. The catalytic activity of nanostructured Ag (0.1 wt%)/CeO2 in dye decolorization is substantially higher than the standard reference TiO2 P25.

2013 ◽  
Vol 668 ◽  
pp. 29-32
Author(s):  
Wen Quan Cui ◽  
Shuang Long Lin ◽  
Shan Shan Ma ◽  
Li Liu ◽  
Ying Hua Liang

The composite Ag2S/K2Ti4O9 photocatalyst was synthesized via a precipitation method. The structure of the photocatalyst was determined by powder X-ray diffraction, scanning electron microscope. The photocatalytic properties for organic matter degradation of the photocatalyst were examined under visible light irradiation. The results showed that, the sample which synthesized at 25°C via a precipitation route,using nitric acid silver and thiourea as the raw materials in the absence of any surfactants or templates has the highest crystallinity and investigated its catalytic behavior. RhB as degradation object, different dosing quantity of the degradation rate were examined, The best dosing quantity (1000 MgL-1) degradation rate was 18.93%. And with K2Ti4O9 for ontology, the degradation of different load rate were examined, The best load (25%) of the degradation rate is 20.57%. The results revealed the Ag2S potential applications in photocatalytic degradation for organic pollutants.


2016 ◽  
Vol 703 ◽  
pp. 321-325
Author(s):  
Hai Feng Chen ◽  
Jia Mei Chen ◽  
Zhi Xue Pan

In this work, novel Cu/BiVO4 photocatalyst were prepared by a low-temperature solid state grinding method using Bi (NO3)3•5H2O, NH4VO3 and Cu (NO3)2•2H2O as raw materials. The structure and properties of the samples were characterized by Infrared Spectroscopy (FT-IR), X-ray diffraction (XRD) and UV-vis diffused reflectance spectroscopy (DRS); Using the degradation of methyl orange (MO) as the probe, it was simulated as the degradation of sewage under the visible light to study the influence of the illumination time and the amount of photocatalysts. Compared with the pure BiVO4, the visible-light absorption scope of BiVO4 was broadened by doping Cu, the UV-Visible absorption edges were slightly red shift and the band gap was narrower. Comparatively speaking, the results indicted that the doped Cu enhanced the photocatalytic activities of BiVO4.


2019 ◽  
Vol 13 (26) ◽  
pp. 171-177
Author(s):  
Ban M. Al-Shabander

Titanium dioxide nanorods have been prepared by sol-gel templatemethod. The structural and surface morphology of the TiO2 nanorods wasinvestigated by X-ray diffraction (XRD) and atomic force microscopy(AFM), it was found that the nanorods produced were anatase TiO2 phase.The photocatalytic activity of the TiO2 nanorods was evaluated by thephoto degradation of methyl orange (MO). The relatively higherdegradation efficiency for MO (D%=78.2) was obtained after 6h of exposedto UV irradiation.


2011 ◽  
Vol 197-198 ◽  
pp. 919-925 ◽  
Author(s):  
Min Wang ◽  
Qiong Liu

Silver (Ag+) doped iron (III) vanadate (FeVO4) samples are prepared by the precipitation method and then characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and X-ray photoelectron spectroscopy(XPS). The photocatalytic activity under visible light is evaluated by photocatalytic degradation of methyl orange (MO) in the solution. The results show that both FeVO4 and Ag+ doped FeVO4 samples are triclinic, the later have different surface morphology, and some needle-shaped materials appear in the later. From XPS, there are more Fe2+ ions in Ag+ doped FeVO4 sample than that in FeVO4 one without Ag+. It indicates that Ag+ doping can increase the density of the surface oxygen vacancies of catalysts, which can act as electron traps promoting the electron-hole separation and then increase the photo-activity. The decoloration rate after Ag+ doping against methyl orange solution can reach about 81%, and be more about 20% than that of pure FeVO4.


2019 ◽  
Vol 807 ◽  
pp. 50-56
Author(s):  
Yun Long Zhou ◽  
Zhi Biao Hu ◽  
Li Mei Wu ◽  
Jiao Hao Wu

Using hydrated manganese sulfate and general type graphene (GR) as raw materials, Mn3O4/GR composite has been successfully prepared by the liquid phase chemical co-precipitation method at room temperature. X-ray diffraction (XRD) was used to investigate the phase structure of Mn3O4powder and Mn3O4/GR composite; The electrochemical performances of the samples were elucidated by cyclic voltammetry and galvanostatic charge-discharge test in 0.5 mol/L Na2SO4electrolyte. The results show that the Mn3O4/GR composite possesses graphene phase and good reversibility; the composite also displays a specific capacitance of 318.8 F/g at a current density of 1 A/g.


2011 ◽  
Vol 364 ◽  
pp. 377-381 ◽  
Author(s):  
Syazwani Mohd Zaki ◽  
Srimala Sreekantan

This paper described the preparation of Cu loaded TiO₂ nanotube arrays. Firstly, TiO₂ nanotube arrays were formed by anodization. Afterwards, the formed nanotube arrays were incorporated with Cu by wet impregnation method. The soaking time and concentration were varied to obtain an optimum set of parameter for Cu incorporation in TiO₂ nanotubes. After anodization, all samples were annealed at 400°C for 4 hours to obtain anatase phase. The nanotube arrays were characterized by field emission scanning electron microscopy (FESEM), x-ray diffraction (XRD) and x-ray photoelectron spectra (XPS). An average diameter 63.02 nm and length 12.15µm were obtained for TiO₂ nanotubes. The photocatalytic activity of these nanotubes were investigated with methyl orange (MO) and the TiO₂ nanotube prepared in 0.01M of Cu (NO₃)₂ solution within 3 hours demonstrates the highest photocatalytic activity with 83.6% degradation of methyl orange. Keywords: copper doping, wet impregnation, photocatalytic activity


2012 ◽  
Vol 190-191 ◽  
pp. 534-538 ◽  
Author(s):  
Bin Xia Zhao ◽  
Li Ping Dang ◽  
Xiao Li Zhang ◽  
Na Yang ◽  
Yuan Yuan Sun

In order to obtain TiO2-pillared materials, montmorillonite (MMT) from Xinghe Co. of Neimeng as matrix, was used. The tetrabutyl titanate was used as precursor for the preparation of the TiO2-pillared montmorillonite, which was applied to introduce TiO2 into its interlayer space (15 mmol Ti/g clay). The as-prepared materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and infrared spectroscopy (IR). The XRD patterns and the SEM photograph illustrated that the layers of MMT were delaminated and all samples were of the anatase phase. The TiO2-pillared montmorillonite was shown high photoactivity for the photodegradation of methyl orange dyestuff in aqueous solution under UV irradiation. The results showed that TiO2-pillared montmorillonite containing the anatase phase of TiO2 by calcination at 773 K and it was with the highest photocatalytic activity. Comparative photodegradation experiments were also conducted under different conditions. The experimental results demonstrated the feasibility of utilizing TiO2-pillared clays as a catalyst for removing methyl orange from water.


2010 ◽  
Vol 663-665 ◽  
pp. 187-190 ◽  
Author(s):  
Yu Hui Zhang ◽  
Ji Xin Su ◽  
Xiao Peng Wang ◽  
Qi Pan ◽  
Wen Qu

Based on X-ray diffraction results, the gallery height of modified Mg3Al-LDH was expanded to 9.6Å from the original 4.8Å, indicating that the H3PW12O40 was indeed inserted into the hydroxide layers. Moreover, the results of FT-IR spectra proved the Keggin structure of PW11O397- species. The resulting material showed a high activity of degradation of methyl orange in the presence of H2O2 and UV light irradiation.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2189
Author(s):  
V. Beena ◽  
S. L. Rayar ◽  
S. Ajitha ◽  
Awais Ahmad ◽  
Munirah D. Albaqami ◽  
...  

The development of cost-effective and ecofriendly approaches toward water purification and antibacterial activity is a hot research topic in this era. Purposely, strontium-doped zinc selenide (Sr-doped ZnSe) nanoparticles, with different molar ratios of Sr2+ cations (0.01, 0.05, and 0.1), were prepared via the co-precipitation method, in which sodium borohydride (NaBH4) and 2-mercaptoethanol were employed as reducing and stabilizing agents, respectively. The ZnSe cubic structure expanded by Sr2+ cations was indicated by X-ray diffraction (XRD) analysis. The absorption of the chemical compounds on the surface was observed via Fourier transform infrared (FT-IR) spectroscopy. The optical orientation was measured by ultraviolet–visible diffused reflectance spectroscopy (UV-DRS) analysis. The surface area, morphology, and elemental purity were analyzed using field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), and energy-dispersive spectroscopy (EDS) analyses. The oxidation state and valency of the synthesized nanoparticles were analyzed using X-ray photoelectron spectroscopy (XPS). Sr-doped ZnSe nanoparticles were investigated for photocatalytic degradation of methyl orange (MO), and their antibacterial potential was investigated against different bacterial strains. The antibacterial activity examined against Staphylococcus aureus and Escherichia coli implied the excellent biological activity of the nanoparticles. Moreover, the Sr-doped ZnSe nanoparticles were evaluated by the successful degradation of methyl orange under visible light irradiation. Therefore, Sr-doped ZnSe nanoparticles have tremendous potential in biological and water remediation fields.


2016 ◽  
Vol 723 ◽  
pp. 444-449 ◽  
Author(s):  
Juan Chen ◽  
Zhi Liang Huang ◽  
Wen Zhao Li

The porous basic magnesium carbonate (Mg5(CO3)4(OH)2.4H2O) crystal crystallographic materials with flower-like structure were prepared successfully by homogeneous precipitation method. Magnesium chloride hexahydrate (MgCl2.6H2O) and urea (CO(NH2)2) wereused as reaction materials. The experimental equipment was held at 100°C for 8 h. Phase and morphology of the product were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The formation mechanism of the product was investigated. It was found that the CO2 bubbles acted as porous templates. The growth and gathering of the CO2 bubbles induced the growth of the MgCO3.3H2O columnar crystals. Then the dissolution of the MgCO3.3H2O and the deposition of Mg5(CO3)4(OH)2.4H2O happened simultaneously. Finally the disappearance of MgCO3.3H2O brought about the formation of the porous structure.


Sign in / Sign up

Export Citation Format

Share Document