scholarly journals Load-bearing capacity of the steel-to-timber connections in fire temperature

2019 ◽  
Vol 262 ◽  
pp. 09005 ◽  
Author(s):  
Tomasz Domański ◽  
Kamil Kmiecik

Connections are usually the weakest parts in most structures, especially in fire conditions. The load-bearing capacity of timber structures is often limited by the resistance of steel connection between timber structural members. The temperature distribution in the cross-section as well as the influence of steel fasteners on the charring of the timber members is necessary to predict the fire resistance of the connection. This paper presents a summary of results from numerical studies on the fire behaviour of the steel connections between timber structural members. To make the three-dimensional thermal models of the joints, the FE (finite element) programme SAFIR was used. Then, the finite element models of the connections were used to analyse the temperature distribution inside cross-sections under standard ISO-fire exposure. The failure modes from the literature were used to predict the load-bearing capacity of the steel connections at elevated temperatures. The reduction of the cross-section caused by charring, the reduction of embedment strength and the reduction of steel strength at fire conditions were taken into account in the calculations.

2012 ◽  
Vol 628 ◽  
pp. 156-160
Author(s):  
In Kyu Kwon ◽  
Hyung Jun Kim ◽  
Heung Youl Kim ◽  
Bum Yean Cho ◽  
Kyung Suk Cho

Structural steel has been used since the early 1970’s in Korea as primary structural members such as columns, beams, and trusses. The materials have much higher strength such as fast construction, high load bearing capacity, high construction quality but those have a fatal weakness as well. Load-bearing capacity is going down when the structural members are contained in fire condition. Therefore, to protect the structural members made of steels from the heat energy the fire resistance performance required. Generally, the fire resistance performance have evaluated from the exact fire tests in fire furnaces. But the evaluation method takes much more time and higher expenses so, the engineering method requires. The engineering method not only adopts a science but also an engineering experience. In this paper, to make various data-bases for evaluation of structural members such as columns(H-section, RHS), beams, loaded fire tests were conducted and derived not only each limiting temperature but also fire resistance respectively.


Author(s):  
Serhii Bilyk ◽  
Vitalina Yurchenko

Parametric optimization problem for single edge fold size in cold-formed structural members subjected to central compression has been considered by the paper. Determination the load-bearing capacity of the cold-formed structural members has been performed using the geometrical properties calculated based on the constructed “effective” (reduced) cross-sections taking into account local buckling effects in the section as well as distortional buckling effects. Single edge fold size in cold-formed C-profile has been considered as design variable. Linear convolution of criteria, namely minimization criterion of design area of stiffener cross-section and maximization criterion effective area of stiffener cross-section which defines it reduced load-bearing capacity due to flexural buckling has been used as optimization criterion. The parametric optimization problem has been solved using the method of objective function gradient projection onto the active constraints surface with simultaneous correction of the constraints violations. In order to realize the formulated optimization problem, software OptCAD intended to solve parametric optimization problems for steel structural systems has been used. Optimization results of the single edge folds for the cold-formed С-profiles manufactured by «Blachy Pruszyński» company, «BF FACTORY» company as well as «STEELCO» company have been presented by the paper. The results of the performed investigation can be used as recommendations for companies-manufacturers of the cold-formed profiles, as well as a guide for creation the national assortment base of the effective cold-formed profiles promoting wider implementation of cold-formed steel structures in building practice.


2021 ◽  
Author(s):  
Muhammad Rizwan ul Haq ◽  
Aamer Nazir ◽  
Jeng-Ywan Jeng

Abstract Functionality and design of mechanical springs are simple and limited due to manufacturing constraints of conventional fabrication methods being used for making helical and wave springs. In recent era, design for additive manufacturing has proven its great worth to design and manufacture optimal, complex as well as intricate structures with better mechanical and lightweigting properties. This study aims to investigate the mechanical behaviour of functionally gradient wave springs as a function of variation in thickness and morphology of each wave. Functionally gradient wave springs incorporated with different morphology and cross-sections including circular, rectangular and combination of both were designed and printed by keeping mass and height constant to investigate their mechanical properties. Loading-unloading experimentation were conducted within the elastic range ( 90 % of compressible distance) in order to study energy absorption/loss, load-bearing capacity and stiffness of all designs. The experimental results were validated by finite element anaylsis by providing the identical boundary conditions of experimental setup. The results revealed that the stiffness of wave spring having rectangular cross-section is increased significantly while energy absorption is almost 90 % increased due to circular cross-section of waves. Overall, the design with combination of round and rectangular cross-sectional waves has better stiffness and energy absorption properties. For further investigation of mechanical properties due to variation in cross-section of waves, more designs including semi-circular and filleted waves, were designed and finite element of those showed that 786 N of load-bearing capacity is achieved in the wave spring having semicircular cross-section of waves which is double than the wave spring having variable circular cross-section of waves.


2019 ◽  
Vol 23 (6) ◽  
pp. 1074-1086 ◽  
Author(s):  
Tao Zhu ◽  
Hongjun Liang ◽  
Yiyan Lu ◽  
Weijie Li ◽  
Hong Zhang

This article investigates the behaviour of slender concrete-filled steel tube square columns strengthened by concrete-filled steel tube jacketing. The columns were realised by placing a square outer steel tube around the original slender concrete-filled steel tube column and pouring strengthening concrete into the gap between the inner and outer steel tubes. Three concrete-filled steel tube square columns and seven retrofitted columns ranging from 1200 to 2000 mm were tested to failure under axial compression. The experimental parameters included three length-to-width ( L/ B1) ratios, three width-to-thickness ( B1/ t1) ratios and three strengths of concrete jacket (C50-grade, C60-grade and C70-grade). Experimentally, the retrofitted columns failed in a similar manner to traditional slender concrete-filled steel tube columns. After strengthening, the retrofitted columns benefitted greatly from the component materials, with their load-bearing capacity and ductility notably enhanced. These enhancements were mainly brought about by sectional enlargement and good confinement of concrete. A finite element model was developed using ABAQUS to better understand the axial behaviour of the retrofitted specimens. A parametric study was conducted, with parameters including the length of the column, thickness of the outer steel tube, strength of the concrete jacket, yield strength of the outer steel tube, thickness of the inner steel tube and strength of the inner concrete. Furthermore, the finite element model was adopted to study the behaviour of rust-damaged and post-fire slender concrete-filled steel tube square columns strengthened by square concrete-filled steel tube jacketing. A modified formula was proposed to predict the load-bearing capacity of retrofitted specimens, and the numerical results agreed well with the experiments and the finite element results of undamaged, rust-damaged and post-fire specimens. It could be used as a reference for practical application.


2016 ◽  
Vol 8 (3) ◽  
pp. 85-93
Author(s):  
Andrej Mudrov ◽  
Gintas Šaučiuvėnas ◽  
Antanas Sapalas ◽  
Ivar Talvik

This article considers the calculation of load-bearing capacity of flange-plate joints with bolts along two sides of rectangular hollow sections (RHS) under axial tension. It provides a review and comparison of various calculation methodologies for establishing the load-bearing capacity of RHS flange-plate joints, such as suggested in EN 1993-1-8:2005 and STR 2.05.08:2005 as well as those proposed in different countries and by other authors. Common design principles and derived results for load-bearing capacity of flange-plate joints have been analysed and compared. Following the numerical modelling, which has been done using ANSYS Workbench finite element program, the derived results for load-bearing capacity have been compared with analytical load-bearing capacity results for flange-plate joints of the same structure. The analysis has focused on one type of flange-plate joints with bolts – both preloaded and non-preloaded – along two opposite sides of the tube, with the flange thickness of 15 mm and 25 mm.


2009 ◽  
Vol 15 (1) ◽  
pp. 21-33 ◽  
Author(s):  
Artiomas Kuranovas ◽  
Douglas Goode ◽  
Audronis Kazimieras Kvedaras ◽  
Shantong Zhong

This paper represents the analysis of 1303 specimens of CFST experimental data. Test results are compared with EC4 provided method for determining the load‐bearing capacity of these composite elements. Several types of CFSTs were tested: both circular and rectangular cross‐sections with solid and hollow concrete core with axial load applied without and with moment, with sustained load and preloading. For circular cross‐section columns there is a good agreement between the test failure load and the EC4 calculation for both short and long columns with and without moment. For rectangular cross‐section columns the agreement is good except when the concrete cylinder strength was greater than 75 MPa, when many tests failed below the strength predicted by EC4. Preloading the steel tube before filling with concrete seems to have no effect on the strength. This paper also presents the stress distribution, confinement distribution and complete average longitudinal stress‐strain curves for concrete‐filled steel tubular elements. Based on the definition of the “Unified Theory”, the CFST is looked upon as an entity of a new composite material. In this paper, the research achievement of the strength and stability for centrifugal‐hollow and solid concrete filled steel tube are introduced. These behaviours relate to the hollowness ratio and the confining indexes of corresponding solid CFST. If the hollow ratio equals to 0,4–0,5 and over, the N‐ϵ relationship exists in steady descending stage. The critical stress of CFST elements stability is determined as an eccentric member with the initial eccentricity by use of finite element method. Santrauka Straipsnyje analizuojami 1303 betonšerdžių plieninių strypų bandinių eksperimentiniai duomenys. Duomenys lyginami su eurokode 4 pateiktais kompozitinių elementų laikomosios galios nustatymo metodais. Analizuojami šie betonšerdžių plieninių strypų bandinių tipai: pilnaviduriai ir tuščiaviduriai, apskrito ir stačiakampio skerspjūvio kolonos, kurių galuose veikia arba neveikia momentas, su iš anksto pridėta arba ilgalaike apkrova. Apskrito skerspjūvio kolonų laikomosios galios bandymų rezultatai atitinka skaičiavimų reikšmes, apskaičiuotas pagal eurokode 4 pateiktu metodu. Stačiakampio skerspjūvio elementų laikomosios galios reikšmių bandymo rezultatai puikiai atitinka teorines reikšmes, kai betono ritininis stipris nesiekia 75 MPa. Išankstinis elementų apkrovimas poveikio elementų laikomajai galiai beveik neturi. Taip pat nagrinėjami betonšerdžių elementų įtempių būvių pasiskirstymas, betono apspaudimo poveikis ir išilginių deformacijų ir įtempių kreivės. Pateikiama S. T. Zhong „Unifikuota teorija“, kuri nagrinėja kompozitinį elementą kaip visumą. Straipsnyje nagrinėjamos kompozitinio plieninio ir betoninio elemento stiprumo ir pastovumo sąlygos. Tokių elementų reikšmėmis. Jeigu tuštumos santykis lygus 0,4–0,5 ir daugiau, N-ε sąryšis yra kritimo stadijoje. Elgsenos stadijos keičiasi pagal tuštumos koeficientą.


2011 ◽  
Vol 341-342 ◽  
pp. 833-837
Author(s):  
Xun Wang ◽  
Qi Lin Zhang ◽  
Jun Chen ◽  
Zhi Xiong Tao ◽  
Jun Chen

Combining with load bearing capacity tests, the laminated glass simply supported on four sides subjected to bending is analyzed using the finite element software ANSYS. Based on the theoretical and experimental deflection results, the accurate calculation model is established. In order to calculate the deflection of laminated glass subjected to short-time loading such as wind load based on different codes, the equivalent thickness of laminated glass based on Chinese code 2003 and European code is calculated, respectively. Finally, on the basis of many finite element analyses, load bearing capacity tests and code values, the formulas for calculating maximum deflectiont of four-sides supported laminated glass is revised in “Technical code for glass curtain wall engineering” (China) and corresponding correction coefficient is given.


2018 ◽  
Vol 64 (4) ◽  
pp. 89-103
Author(s):  
A. Nesterenko ◽  
G. Stolpovskiy ◽  
M. Nesterenko

AbstractThe actual load-bearing capacity of elements of a building system can be calculated by dynamic parameters, in particular by resonant frequency and compliance. The prerequisites for solving such a problem by the finite element method (FEM) are presented in the article. First, modern vibration tests demonstrate high accuracy in determination of these parameters, which reflects reliability of the diagnosis. Secondly, most modern computational complexes do not include a functional for calculating the load-bearing capacity of an element according to the input values of resonance frequencies. Thirdly, FEM is the basis for development of software tools for automating the computation process. The article presents the method for calculating flexural stiffness and moment of inertia of a beam construction system by its own frequencies. The method includes calculation algorithm realizing the finite element method.


Sign in / Sign up

Export Citation Format

Share Document