Effect of Calcinations on Characterizations of Fabricated Nano Manganese Ferrite

2013 ◽  
Vol 634-638 ◽  
pp. 2150-2154 ◽  
Author(s):  
Rita Sundari ◽  
Tang Ing Hua ◽  
M. Rusli Yosfiah

A citric acid anionic surfactant has been applied for nano manganese ferrite (MnFeO3) fabrication using sol gel method. The calcinations have been varied for 300, 600 and 800oC. The UVDR (UV-Vis Diffused Reflectance) analysis shows a high absorptive band gap after 400 nm for the 600oC calcinated MnFeO3. The DTA (Differential Thermal Analysis) profiles exhibit remarkably trapped volatile matters (H2O, CO2, and NO2) in the fabricated MnFeO3 under sol gel heat treatment at 100oC and the peaks disappeared as the calcination increased to 600oC. As the temperature elevated from 100 to 300oC, the absorption peaks of volatile components are disappeared as demonstrated clearly by the FTIR (Fourier Transform Infrared) spectra of the fabricated material, which 3393 cm-1 corresponded to OH group, 1624 cm-1 to CO group, and 1384 cm-1 to NO group. The XRD (X-Ray Diffraction) spectra show clearly the alteration process from amorphous to crystalline structure as the calcinations increased from 300 to 600oC. In addition, the TEM (Transmission Electron Microscope) analysis exhibits parts of the fabricated MnFeO3 found in cubic nano size of 15-40 nm under interested calcinations and the result is in agreement with that obtained by XRD investigation.

2011 ◽  
Vol 391-392 ◽  
pp. 1123-1127
Author(s):  
Qi Xiao ◽  
Lan Gao

The Sm3+-doped Ca10(PO4)6(OH)2 nanowires are synthesized by hydrothermal method. X-ray diffraction confirmed that the nanowires are made of the hexagonal Ca10(PO4)6(OH)2. Scanning electron microscope and transmission electron microscope analysis show that the lengths of the nanowires are approximately 5μm, and their diameters are around 100 nm, and the aspect (length/diameter) ratio is about 50. The room temperature photoluminescence (PL) spectra of Sm3+-doped Ca10(PO4)6(OH)2 nanowires doped with different Sm3+ concentration under 405 nm excitation has been investigated. It is found that there are three main sharp emissions peaks at near 569, 604, and 649 nm. The three emissions are due to the f-f forbidden transitions of the 4f electrons of Sm3+, corresponding to 4G5/2→6H5/2 (569 nm), 6H7/2(604 nm), and 6H9/2(649 nm), respectively. In addition, concentration quenching is also observed. It is found that the Sm3+4G5/2→6H7/2(604 nm) emission intensity of Sm3+-doped Ca10(PO4)6(OH)2 nanowires significantly increases with the increase of Sm3+ concentration, and shows a maximum when Sm3+ doping content is 0.5%. If Sm3+ concentration continues to increase, namely more than 0.5%, the Sm3+4G5/2→6H7/2 emission intensity decreases.


1995 ◽  
Vol 418 ◽  
Author(s):  
J. Forbes ◽  
J. Davis ◽  
C. Wong

AbstractThe detonation of explosives typically creates 100's of kbar pressures and 1000's K temperatures. These pressures and temperatures last for only a fraction of a microsecond as the products expand. Nucleation and growth of crystalline materials can occur under these conditions. Recovery of these materials is difficult but can occur in some circumstances. This paper describes the detonation synthesis facility, recovery of nano-size diamond, and plans to synthesize other nano-size materials by modifying the chemical composition of explosive compounds. The characterization of nano-size diamonds by transmission electron microscopy and electron diffraction, X-ray diffraction and Raman spectroscopy will also be reported.


2021 ◽  
Vol 11 (5) ◽  
pp. 706-716
Author(s):  
Nada D. Al-Khthami ◽  
Tariq Altalhi ◽  
Mohammed Alsawat ◽  
Mohamed S. Amin ◽  
Yousef G. Alghamdi ◽  
...  

Different organic pollutants have been remediated photo catalytically by applying perovskite photocatalysts. Atrazine (ATR) is a pesticide commonly detected as a pollutant in drinking, surface and ground water. Herein, FeYO3@rGO heterojunction was synthesized and applied for photooxidation decomposition of ATR. First, FeYO 3nanoparticles (NPs) were prepared via routine sol-gel. After that, FeYO3 NPs were successfully incorporated with different percentages (5, 10, 15 and 20 wt.%) of reduced graphene oxide (rGO) in the synthesis of novel FeYO3@rGO photocatalyst. Morphological, structural, surface, optoelectrical and optical characteristics of constructed materials were identified via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Transmission electron microscopy (TEM), adsorption/desorption isotherms, diffusive reflectance (DR) spectra, and photoluminescence response (PL). Furthermore, photocatalytic achievement of the constructed materials was evaluated via photooxidative degradation of ATR. Various investigations affirmed the usefulness of rGO incorporation on the advancement of formed photocatalysts. Actually, novel nanocomposite containing rGO (15 wt.%) possessed diminished bandgap energy, as well as magnified visible light absorption. Furthermore, such nanocomposite presented exceptional photocatalytic achievement when exposed to visible light as ATR was perfectly photooxidized over finite amount (1.6 g · L-1) from the optimized photocatalyst when illuminated for 30 min. The advanced photocatalytic performance of constructed heterojunctions could be accredited mainly to depressed recombination amid induced charges. The constructed FeYO3@rGO nanocomposite is labelled as efficient photocatalyst for remediation of herbicides from aquatic environments.


Nanopages ◽  
2019 ◽  
pp. 1-11
Author(s):  
G. M. Taha ◽  
M. N. Rashed ◽  
M. S. El-Sadek ◽  
M. A. Moghazy

Abstract BiFeO3 (BFO) nanopowder was synthesized in a pure form via a sol- gel method based on glycol gel reaction. Effect of drying and preheating temperature on preventing other phases was studied. Many parameters were studied as calcination temperature and time & stirring temperature as well. The prepared powder was characterized by X-Ray Diffraction of powder (XRD) and Transmission Electron Microscope (TEM). High pure BiFeO3 was obtained by preheated process at 400 °C for 0.5 h and calcination at 600 °C for 0.5 h without any impurities compared to dry at110 °C.


2014 ◽  
Vol 543-547 ◽  
pp. 3741-3744
Author(s):  
Quan Jing Mei ◽  
Cong Ying Li ◽  
Jing Dong Guo ◽  
Gui Wang ◽  
Hai Tao Wu

The ecandrewsite-type ZnTiO3was successfully synthesized by the aqueous sol-gel method using TiO2dioxide and zinc nitrate as starting materials instead of expensive organic solvent and metal alkoxides. The as-prepared nanopowders were characterized by X-ray diffraction (XRD), differential thermal analysis (DTA) and transmission electron microscopy (TEM), respectively. The results showed that the calcination process of gel consisted of a series of oxidation and combustion reactions, accompanied by significantly exothermal effects. Highly reactive nanosized ZnTiO3powders were successfully obtained at 850 °C with particle size ~50 nm. By comparison, the aqueous sol-gel process was the most effective and least expensive technique used for the preparation of ZnTiO3nanopowders.


2017 ◽  
Vol 76 (6) ◽  
pp. 1436-1446 ◽  
Author(s):  
Chenmo Wei ◽  
Jing Zhang ◽  
Yongli Zhang ◽  
Gucheng Zhang ◽  
Peng Zhou ◽  
...  

Sulfate radical-based advanced oxidation processes have had considerable attention due to the highly oxidizing function of sulfate radicals (SO4−·) resulting in acceleration of organic pollutants degradation in aqueous environments. A Co-Ni mixed oxide nanocatalyst, which was prepared by the sol-gel method, was employed to activate peroxymonosulfate (PMS, HSO5−) to produce SO4−· with Acid Orange 7 (AO7) selected as a radical probe. The catalyst was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). The characterization results indicated that the ingredient of the catalyst had been changed and the amount of surface hydroxyl increased significantly with the addition of Ni. Therefore, it proved that Co-NiOx catalyst was more effective than CoOx to activate PMS. Moreover, ultrasound (US) can increase the degradation rate of AO7 and US/Co-NiOx/PMS system. This study also focused on some synthesis parameters and the system reached the maximum efficiency under the condition when [PMS] = 0.4 mM, [catalyst] = 0.28 g/L, Pus = 200 W. The AO7 removal in these systems follows first order kinetics. Last but not least, quenching studies was conducted which indicated that the amount of hydroxyl radicals (·OH) increases with the increase of initial pH and SO4−· was the primary reactive oxidant for AO7 degradation.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Aidong Tang ◽  
Yuehua Deng ◽  
Jiao Jin ◽  
Huaming Yang

A novel nanocomposite ZnFe2O4-TiO2/MCM-41 (ZTM) was synthesized by a sol-gel method and characterized through X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), N2adsorption-desorption, Raman spectroscopy, and ultraviolet visible (UV-vis) spectrophotometry. The results confirmed the incorporation of ZnFe2O4-TiO2nanoparticles inside the pores of the mesoporous MCM-41 host without destroying its integrity. ZnFe2O4nanoparticles can inhibit the transformation of anatase into rutile phase of TiO2. Incorporation of ZnFe2O4-TiO2within MCM-41 avoided the agglomeration of nanoparticles and reduced the band gap energy of TiO2to enhance its visible light photocatalytic activity. UV-vis absorption edges of ZTM nanocomposites redshifted with the increase of Zn/Ti molar ratio. The nanocomposite approach could be a potential choice for enhancing the photoactivity of TiO2, indicating an interesting application in the photodegradation and photoelectric fields.


2011 ◽  
Vol 403-408 ◽  
pp. 1205-1210
Author(s):  
Jaleh Babak ◽  
Ashrafi Ghazaleh ◽  
Gholami Nasim ◽  
Azizian Saeid ◽  
Golbedaghi Reza ◽  
...  

In this work ZnO nanocrystal powders have been synthesized by using Zinc acetate dehydrate as a precursor and sol-gel method. Then the products have been annealed at temperature of 200-1050°C, for 2 hours. The powders were characterized using X-ray diffraction (XRD), UV-vis absorption and photoluminescence (PL) spectroscopy. The morphology of refrence ZnO nanoparticles have been studied using Transmission Electron Microscope (TEM). During the annealing process, increase in nanocrystal size, defects and energy gap quantitative, and decrease in specific surface area have been observed.


2012 ◽  
Vol 66 (8) ◽  
Author(s):  
Li-Xin Zhang ◽  
Yi-Xin Sun ◽  
Hong-Fang Jiu ◽  
Yue-Hua Fu ◽  
Yuan-Zhong Wang ◽  
...  

AbstractThis work presents a sol-gel carbon sphere template-assisted method of hollow Eu2O3 microspheres preparation. X-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), as well as photoluminescence (PL) were used to characterise the products. The formation of hollow structure Eu2O3 microspheres can be assigned to a sol-gel carbon template. Furthermore, this work may confirm that the precursor sol-gel can be loaded onto the inner as well as the outer surface of carbon templates similarly as ions and nanocrystals. The presented method can afford a simple and efficient technique to obtain a series of hollow structure inorganic materials with high productivity.


Sign in / Sign up

Export Citation Format

Share Document