scholarly journals Ultrasound enhanced heterogeneous activation of peroxymonosulfate by a Co-NiOx catalyst

2017 ◽  
Vol 76 (6) ◽  
pp. 1436-1446 ◽  
Author(s):  
Chenmo Wei ◽  
Jing Zhang ◽  
Yongli Zhang ◽  
Gucheng Zhang ◽  
Peng Zhou ◽  
...  

Sulfate radical-based advanced oxidation processes have had considerable attention due to the highly oxidizing function of sulfate radicals (SO4−·) resulting in acceleration of organic pollutants degradation in aqueous environments. A Co-Ni mixed oxide nanocatalyst, which was prepared by the sol-gel method, was employed to activate peroxymonosulfate (PMS, HSO5−) to produce SO4−· with Acid Orange 7 (AO7) selected as a radical probe. The catalyst was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). The characterization results indicated that the ingredient of the catalyst had been changed and the amount of surface hydroxyl increased significantly with the addition of Ni. Therefore, it proved that Co-NiOx catalyst was more effective than CoOx to activate PMS. Moreover, ultrasound (US) can increase the degradation rate of AO7 and US/Co-NiOx/PMS system. This study also focused on some synthesis parameters and the system reached the maximum efficiency under the condition when [PMS] = 0.4 mM, [catalyst] = 0.28 g/L, Pus = 200 W. The AO7 removal in these systems follows first order kinetics. Last but not least, quenching studies was conducted which indicated that the amount of hydroxyl radicals (·OH) increases with the increase of initial pH and SO4−· was the primary reactive oxidant for AO7 degradation.

2021 ◽  
Vol 11 (5) ◽  
pp. 706-716
Author(s):  
Nada D. Al-Khthami ◽  
Tariq Altalhi ◽  
Mohammed Alsawat ◽  
Mohamed S. Amin ◽  
Yousef G. Alghamdi ◽  
...  

Different organic pollutants have been remediated photo catalytically by applying perovskite photocatalysts. Atrazine (ATR) is a pesticide commonly detected as a pollutant in drinking, surface and ground water. Herein, FeYO3@rGO heterojunction was synthesized and applied for photooxidation decomposition of ATR. First, FeYO 3nanoparticles (NPs) were prepared via routine sol-gel. After that, FeYO3 NPs were successfully incorporated with different percentages (5, 10, 15 and 20 wt.%) of reduced graphene oxide (rGO) in the synthesis of novel FeYO3@rGO photocatalyst. Morphological, structural, surface, optoelectrical and optical characteristics of constructed materials were identified via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Transmission electron microscopy (TEM), adsorption/desorption isotherms, diffusive reflectance (DR) spectra, and photoluminescence response (PL). Furthermore, photocatalytic achievement of the constructed materials was evaluated via photooxidative degradation of ATR. Various investigations affirmed the usefulness of rGO incorporation on the advancement of formed photocatalysts. Actually, novel nanocomposite containing rGO (15 wt.%) possessed diminished bandgap energy, as well as magnified visible light absorption. Furthermore, such nanocomposite presented exceptional photocatalytic achievement when exposed to visible light as ATR was perfectly photooxidized over finite amount (1.6 g · L-1) from the optimized photocatalyst when illuminated for 30 min. The advanced photocatalytic performance of constructed heterojunctions could be accredited mainly to depressed recombination amid induced charges. The constructed FeYO3@rGO nanocomposite is labelled as efficient photocatalyst for remediation of herbicides from aquatic environments.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaowen Zou ◽  
Xiaoli Dong ◽  
Limei Wang ◽  
Hongchao Ma ◽  
Xinxin Zhang ◽  
...  

Herein, Ni doped ZnO-TiO2composites were prepared by facile sol-gel approach and were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-visible diffuse reflectance spectroscopy (UV-Vis DRS), X-ray photoelectron spectroscopy (XPS), and photoluminescence spectroscopy (PL). The results indicated that the Ni ions can be incorporated into the lattice of TiO2structure and replace Ti. The introduction of Ni expanded light absorption of TiO2to visible region, increased amount of surface hydroxyl groups and physically adsorbed oxygen (as the electronic scavenges), and then enhanced separation rate of photogenerated carriers. The photodegradation test of reactive brilliant blue (KN-R) under simulated solar light indicated that Ni doped ZnO-TiO2composites have better photocatalytic activities, as compared to those of TiO2and ZnO-TiO2.


2021 ◽  
Author(s):  
Rong Chen ◽  
Dan Zhao ◽  
Yanmao Dong ◽  
Chengrun Cai ◽  
Yan Yuan ◽  
...  

Abstract manganese doped iron oxychloride (Mn-FeOCl) was synthesized by partial pyrolysis method. The Mn-FeOCl was used as heterogeneous catalyst to activate permonosulfate (PMS) for the degradation of azo dye acid red B(ARB) for the first time. The Mn-FeOCl was characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction spectroscopy (XRD). The effects of Mn-FeOCl dosage, PMS concentration, initial pH value, Cl ion concentration and humic acid (HA) dosage on the degradation of ARB by Mn-FeOCl/PMS were investigated. Results showed that the ARB was degraded effectively by Mn-FeOCl/PMS. The mineralization rate of ARB reached 42.5%. As the Mn-FeOCl dosage was 0.1g/L, PMS concentration was 1mmol/L, and ARB concentration was 0.05mmol/L, the degradation rate of ARB reached 99.4% in 30 minutes. With the increase of PMS dosage, Mn-FeOCl dosage, Cl− ion concentration and initial pH value, the decolorization effect of ARB increased. The reaction mechanism was analyzed by free radical quenching experiment and XPS. The main active species were determined as ·OH and SO4·− which generated by PMS activation. The SO4·−−was the main active species.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Qianzhi Xu ◽  
Xiuying Wang ◽  
Xiaoli Dong ◽  
Chun Ma ◽  
Xiufang Zhang ◽  
...  

S/Zn codoped TiO2nanomaterials were synthesized by a sol-gel method. X-ray diffraction, UV-vis diffuse reflectance spectroscopy, transmission electron microscopy, photoluminescence spectroscopy, and X-ray photoelectron spectroscopy were used to characterize the morphology, structure, and optical properties of the prepared samples. The introduction of Zn and S resulted in significant red shift of absorption edge for TiO2-based nanomaterials. The photocatalytic activity was evaluated by degrading reactive brilliant red X-3B solution under simulated sunlight irradiation. The results showed S/Zn codoped TiO2exhibited higher photocatalytic activity than pure TiO2and commercial P25, due to the photosynergistic effect of obvious visible light absorption, efficient separation of photoinduced charge carriers, and large surface area. Moreover, the content of Zn and S in the composites played important roles in photocatalytic activity of TiO2-based nanomaterials.


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3349 ◽  
Author(s):  
Pablo A. Ochoa Rodríguez ◽  
Tamara B. Benzaquén ◽  
Gina A. Pecchi ◽  
Sandra G. Casuscelli ◽  
Verónica R. Elías ◽  
...  

Titanium dioxide materials were synthesized using two different methods. The samples were characterized by X-ray diffraction (XRD), UV–Visible diffusion reflectance spectroscopy (UV-Vis DR), Raman spectroscopy, N2 adsorption/desorption, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron spectroscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Although both kind of materials were found to have mesoporous structure and anatase crystalline phase, one of them was obtained from a synthesis method that does not involve the use of surfactants, and therefore, does not require calcination at high temperatures. This implies that the synthesized solid was self-doped with carbon species, coming only from the same source used for titanium. Then, the relationship between the presence of these species, the final calcination temperature, and the photocatalytic activity of the solids was studied in terms of the degradation and mineralization of an Acid Orange 7 aqueous solution, under visible radiation. A photosensitizing effect caused by the non-metal presence, that allows the solid to extend its absorption range, was found. Hence, a novel route to prepare C-modified photoactive mesoporous TiO2, simpler and cheaper, where neither a template nor an external carbon source is used, could be performed.


2013 ◽  
Vol 745-746 ◽  
pp. 685-689
Author(s):  
Jun Yan Wu ◽  
Fei Chen ◽  
Qiang Shen ◽  
Lian Meng Zhang

Antimony-doped tin oxide (ATO) nanoparticles with controlled doping level were prepared by a nonaqueous solution route, using alcohol as the solvent, citric acid as an agent, tin (IV) tetrachloride as tin source and antimony (III) chlorideas as antimony sources. As-synthesized samples were characterized by Thermogravimetric analysis (TGA), powder X-ray diffraction (XRD), transmission electron micrographs (TEM), N2 adsorption-desorption isotherms, and X-ray photoelectron spectroscopy (XPS). The results showed that the content of citric acid was the most important processing parameter which was largely governing the reaction course and the complete incorporation of Sb. When the citric acid to metal mol ratio was 2, the particles were the highly crystallized ATO nanoparticles of about 20nm and the Sb atoms were indeed incorporated into the SnO2 crystal structure (cassiterite SnO2).


2011 ◽  
Vol 55-57 ◽  
pp. 1506-1510 ◽  
Author(s):  
Jing Wei ◽  
Xin Tan ◽  
Tao Yu ◽  
Lin Zhao

A series of Y/TiO2nanoparticles (NPs) were synthesized via sol-gel method. The crystal structures, morphologies and chemical properties were characterized using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). We investigated the effects of different doping amounts of Y on the reaction of CO2photoreduction. The results shown that 0.1 wt.%Y/TiO2(0.1YT) performed the highest photocatalytic activity, which yielded 384.62 µmol/g∙cat. formaldehyde after 6 h of UV illumination.


2018 ◽  
Vol 71 (11) ◽  
pp. 874 ◽  
Author(s):  
Xue Huang ◽  
Jing Zhang ◽  
Xiao Zhang ◽  
Qing-Ping Wu ◽  
Chun-Hui Yan

Calcined Cu-based metal–organic frameworks impregnated with nickel nitrate catalysts (CuNi@C) were synthesised. X-Ray diffraction, scanning electronic microscopy, energy dispersive X-ray spectrometry, and X-ray photoelectron spectroscopy techniques were applied for the characterisation of the synthesised catalyst, which revealed an octahedral particle shape, rough surface, and metallic copper (Cu, CuO) and nickel (Ni, NiO) particles. CuNi@C was fabricated as a novel peroxymonosulfate (PMS) activator for the oxidative degradation of Acid Orange 7 (AO7) in aqueous media. Results showed that the CuNi@C/PMS system can efficiently degrade nearly 100 % of 0.02 mmol L−1 AO7 within 60 min. In addition, the trapping experiments confirmed the participation of sulfate radicals (SO4•−) and hydroxyl radicals (HO•) as reactive species in the system. Furthermore, the effects of parameters including catalyst and PMS dosages, initial concentration of AO7, and pH were studied. Results showed that the decolourisation efficiency increased with the increase of catalyst dosage, but decreased with the increase of AO7 concentration. The optimal PMS concentration was 0.675 mmol L−1, and initial pH showed no significant effect on the degradation of AO7. Moreover, the CuNi@C could be reused four times with good activity and reusability. Findings revealed that the CuNi@C/PMS system shows potential for degrading contaminants in the environment, due to its catalytic activity and non-negligible adsorption.


2010 ◽  
Vol 5 (1) ◽  
pp. 155892501000500 ◽  
Author(s):  
Soo-Jin Park ◽  
Yong C. Kang ◽  
Ju Y. Park ◽  
Ed A. Evans ◽  
Rex D. Ramsier ◽  
...  

Titania nanofibers were successfully synthesized by sol-gel coating of electrospun polymer nanofibers followed by calcining to form either the pure anatase or rutile phases. Characterization of these materials was carried out using scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-vis spectroscopy techniques. The average diameter of these ceramic nanofibers was observed to be around 200 nm for both the rutile and anatase forms. The valence band structure and optical absorption thresholds differ, however, indicating that nanofibrous mats of titania can be selectively developed for different applications in catalysis and photochemistry.


2017 ◽  
Vol 10 (05) ◽  
pp. 1750061 ◽  
Author(s):  
Qiu Jin ◽  
Chaoyin Nie ◽  
Qianqian Shen ◽  
Yusheng Xu ◽  
Yanzhong Nie

Cobalt (Co) and sulfur (S) co-doped titanium dioxide (TiO2) catalysts were synthesized via sol–gel method. The structure of TiO2was characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM). The valence states of elements were studied by X-ray photoelectron spectroscopy (XPS), and the optical-absorption properties of the catalysts were tested using the ultraviolet–visible (UV–Vis) spectrophotometer. The results showed that the grain sizes of Co and S co-doped TiO2 decreased with the increase of Co and S doping concentration within a certain range, and then the catalysts had obvious red shift on the absorption of visible light. Sample (2%Co–5%S–TiO2) showed excellent light absorption characteristics and the photo-response threshold increased significantly to about 760[Formula: see text]nm. Also, the further degradation test under visible light shows the 2%Co–5%S-TiO2 sample exhibit apparently improved degradation efficiency for Rhodamine B compared to the undoped one.


Sign in / Sign up

Export Citation Format

Share Document