Nanostructural Characteristics and Electrical Conductivity of Copper Nanoparticles-Polypropylene Nanocomposites for Bipolar Plate Application

2013 ◽  
Vol 634-638 ◽  
pp. 2214-2217
Author(s):  
Sari Katili ◽  
Akhmad Herman Yuwono

The current research is aimed at obtaining suitable nanocomposites for bipolar plate application in fuel cell, which fulfill the requirement for electrical and mechanical properties and low production cost. For this purpose, copper nanoparticles (Cu-NPs) were embedded in polypropylene matrix through wet-chemistry technique with the presence of polypropylene-grafted maleic anhydride as the coupling agent. The resulting nanocomposites were characterized with UV-Vis spectroscopy, TEM, SEM, TGA and electrical conductivity measurement. It was found that the addition of Cu-NPs up to 1.50 wt% has improved effect on the electrical conductivity up to 14.43 S/cm. However, further increase of Cu-NPs loading to 2.00 wt% adversely reduced the electrical conductivity down to 9.31 S/cm, as a consequence of severe agglomeration and large pores formation.

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1428
Author(s):  
Xiaowei Fan ◽  
Xuguo Huai ◽  
Jie Wang ◽  
Li-Chao Jing ◽  
Tao Wang ◽  
...  

Graphene film has wide applications in optoelectronic and photovoltaic devices. A novel and facile method was reported for the reduction of graphene oxide (GO) film by electron transfer and nascent hydrogen produced between aluminum (Al) film deposited by magnetron sputtering and hydrochloric acid (HCl) solution for only 5 min, significantly shorter than by other chemical reduction methods. The thickness of Al film was controlled utilizing a metal detection sensor. The effect of the thickness of Al film and the concentration of HCl solution during the reduction was explored. The optimal thickness of Al film was obtained by UV-Vis spectroscopy and electrical conductivity measurement of reduced GO film. Atomic force microscope images could show the continuous film clearly, which resulted from the overlap of GO flakes, the film had a relatively flat surface morphology, and the surface roughness reduced from 7.68 to 3.13 nm after the Al reduction. The film sheet resistance can be obviously reduced, and it reached 9.38 kΩ/sq with a high transmittance of 80% (at 550 nm). The mechanism of the GO film reduction by electron transfer and nascent hydrogen during the procedure was also proposed and analyzed.


Author(s):  
Yunfeng Dong ◽  
Morten Stendahl Jellesen ◽  
Rune Juul Christiansen ◽  
Jesper Hovelskov ◽  
Jorgen Sundgren ◽  
...  

2016 ◽  
Vol 697 ◽  
pp. 327-330 ◽  
Author(s):  
Ke Shan ◽  
Xing Min Guo ◽  
Feng Rui Zhai ◽  
Zhong Zhou Yi

Y0.06Sr0.94Ti0.6Fe0.4O3-δ-YSZ composites were prepared by mixing Y, Fe co-doped SrTiO3 (Y0.06Sr0.94Ti0.6Fe0.4O3-δ known as YSTF) and 8 mol% Y2O3 stabilized ZrO2 (YSZ) in different weight fractions. The phase stability, phase compatibility, microstructure and mixed ionic-electronic conductivity of composites were investigated. Phase analysis by XRD showed no clearly detectable secondary phases. The electrical conductivity measurement on the YSTF-YSZ composites showed a drastic decrease in total electrical and ionic conductivities when more than 10 wt% of YSZ was used in the composites. The total electrical conductivity was 0.102 S/cm for Y0.06Sr0.94Ti0.6Fe0.4O3-δ and 0.043 S/cm for YSTF-20YSZ at 700 oC, respectively. The value at 700 oC is approximately 2.4 times higher than that of YSTF-20YSZ. The ionic conductivity of Y0.06Sr0.94Ti0.8Fe0.2O3-δ varies from 0.015S/cm at 700 oC to 0.02 S/cm at 800 oC, respectively. The value at 800°C is approximately 12.5 times higher than YSTF-20YSZ. The ion transference numbers of YSTF-YSZ composites vary from 0.14 to 0.28 at 800 °C.


2017 ◽  
Vol 28 (1) ◽  
pp. 348-355 ◽  
Author(s):  
Khin Khin Tha ◽  
Ulrich Katscher ◽  
Shigeru Yamaguchi ◽  
Christian Stehning ◽  
Shunsuke Terasaka ◽  
...  

2012 ◽  
Vol 109 (1) ◽  
pp. 159-162 ◽  
Author(s):  
Baoan Liu ◽  
Xin Yin ◽  
Minglei Zhao ◽  
Qinghua Zhang ◽  
Mingxia Xu ◽  
...  

1987 ◽  
Vol 22 (6) ◽  
pp. 761-764 ◽  
Author(s):  
S. S. Nabatov ◽  
A. N. Dremin ◽  
S. O. Shubitidze ◽  
V. V. Yakushev

1980 ◽  
Vol 85 (B4) ◽  
pp. 1876 ◽  
Author(s):  
Tsutomu Mashimo ◽  
Ken-Ichi Kondo ◽  
Akira Sawaoka ◽  
Yasuhiko Syono ◽  
Humihiko Takei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document