Computer Aided Interpretation of Fibrous Texture in Hepatic Magnetic Resonance Images

2013 ◽  
Vol 647 ◽  
pp. 325-330 ◽  
Author(s):  
Yu Fan Zeng ◽  
Xue Jun Zhang ◽  
Wen Yan ◽  
Li Ling Long ◽  
Yu Kun Huang ◽  
...  

The fibrous texture in liver is one of important signs for interpreting the chronic liver diseases in radiologists’ routines. In order to investigate the usefulness of various texture features calculated by computer algorithm on hepatic magnetic resonance (MR) images, 15 texture features were calculated from the gray level co-occurrence matrix (GLCM) within a region of interest (ROI) which was selected from the MR images with 6 stages of hepatic fibrosis. By different combination of 15 features as input vectors, the classifier had different performance in staging the hepatic fibrosis. Each combination of texture features was tested by Support Vector Machine (SVM) with leave one case out method. 173 patients’ MR images including 6 stages of hepatic fibrosis were scanned within recent two years. The result showed that optimal number of features was confirmed from 3 to 7 by investigating the classified accuracy rate between each stage/group. It is evident that angular second moment, entropy, sum average and sum entropy played the most significant role in classification.

2011 ◽  
Vol 301-303 ◽  
pp. 1060-1065 ◽  
Author(s):  
Xu Wang ◽  
Long Zheng Tong ◽  
Xin Li ◽  
Xiao Xia Zhou ◽  
Hui Fang Yang

The aim of this article is to study the texture features of cingulum in patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI) based on magnetic resonance images, and explore the texture differences derived from different gender among each group. Texture analysis was performed on 7 AD patients, 14 MCI patients and 11 normal controls (NC). Texture features extracted from gray level co-occurrence matrix and run-length matrix were analyzed between each two groups. The results showed that texture features of the anterior cingulum had significant differences in the multiple comparisons and features of the posterior cingulum had significant differences between AD and MCI group as well as AD and NC group. There were significant differences between AD and MCI group as well as AD and NC group in male’s cingulum. While in female’s cingulaum, the differences were founded between AD and NC group. The results indicated that the pathological changes in cingulum could be reflected by texture features and the pathological changes may be different in the two genders.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi178-vi179 ◽  
Author(s):  
Saima Rathore ◽  
MacLean Nasrallah ◽  
Zissimos Mourelatos

Abstract INTRODUCTION Large number of diverse imaging [e.g., multi-parametric MRI (mpMRI), and digital pathology images] and non-imaging (e.g., clinical) biomedical data streams are being routinely acquired as part of the standard clinical workflow for glioblastoma patients. However, under the current clinical practice, these data streams are not collectively used for diagnosis. We sought to assess the synergies between pathologic, and radiomic features by evaluating the predictive value of each group of features and their combinations through a prognostic classifier. METHODS The mpMRI (T1,T1-Gd,T2,T2-FLAIR) and corresponding digital pathology images for 135 de novo glioblastoma was acquired from TCIA. An extensive panel of handcrafted features, including shape, volume, intensity distributions, gray-level co-occurrence matrix based texture, was extracted from delineated tumor regions of mpMRI scans. A set of 100 region-of-interest each comprising 1024x1024 that contained viable tumor with descriptive histologic characteristics and that were free of artifacts were extracted from digital pathology images, and were quantified in terms of nuclear texture features, and nuclear intensity and gradient statistics. A support vector regression multivariately integrated these features towards a marker of overall-survival. The accuracy of the predictive model for each group of features, and their combinations, was determined via a 10-fold cross-validation scheme. RESULTS The Pearson correlation coefficient between the survival scores predicted by SVR and the actual survival scores was estimated to be 0.75 and 0.77 for radiographic and pathologic data, however, the integration of these data yielded a clear improvement in correlation (0.81), supporting the synergistic value of these features in the prognostic model. CONCLUSION Radiomic features extracted from preoperative mpMRI, when used together with digital pathology features, offer synergistic value in assessment of prognosis in individual patients. The proposed radiopathomics marker may contribute to (i) stratification of patients into clinical trials, (ii) patient selection for targeted therapy, and (iii) personalized treatment planning.


Author(s):  
Rajani Kumari ◽  
C. Thanuja ◽  
K. Sai Thanvi ◽  
K. Lakshmi ◽  
U. Lavanya

Lung cancer is a leading cause of death worldwide; it refers to the uncontrolled growth of abnormal cells in the lung. A computed tomography (CT) scan of the thorax is the most sensitive method for detecting cancerous lung nodules. A lung nodule is a round lesion which can be either non-cancerous or cancerous. In the CT, the lung cancer is observed as round white shadow nodules. In existing method, the candidate ROIs shape features are calculated, and some blood vessels are get rid of using rule-based according to shape features; secondly, the remainder candidates gray and texture features are calculated; finally, the shape, gray and texture features are taken as the inputs of the SVM (Support Vector Machine) classifier to classify the candidates. Experimental results show that the rule-based approach has no omission, but the misclassification probability is too large; Hence, in the proposed method the nodules were characterized by the computation of the texture features obtained from the gray level co-occurrence matrix (GLCM) in the wavelet domain and were classified using a SVM with radial basis function in order to classify CT images into two categories: with cancerous lung nodules and without lung nodules. The stages of the proposed methodology to design the CADx system are: 1) Extraction of the region of interest, 2) Wavelet transform, 3) Feature extraction, 4) Attribute and sub-band selection and 5) Classification. The same classification is implemented for the convolution neural networks. The final comparison is done between these two networks based on the accuracy.


Author(s):  
Hema Rajini N

A brain tumor classification system has been designed and developed. This work presents a new approach to the automated classification of astrocytoma, medulloblastoma, glioma, glioblastoma multiforme and craniopharyngioma type of brain tumors based on first order statistics and gray level co-occurrence matrix, in magnetic resonance images. The magnetic resonance feature image used for the tumor detection consists of T2-weighted magnetic resonance images for each axial slice through the head. To remove the unwanted noises in the magnetic resonance image, median filtering is used. First order statistics and gray level co-occurrence matrix-based features are extracted. Finally, k-nearest neighbor, artificial neural network, support vector machine and convolutional neural networks are used to classify the brain tumor images. The application of the proposed method for tracking tumor is demon­strated to help pathologists distinguish its type of tumor. A classification with an accuracy of 89%, 90%, 91% and 95% has been obtained by, k-nearest neighbor, artificial neural network, support vector machine and convolutional neural networks.


Author(s):  
Jayashri Joshi ◽  
Mrs.A.C. Phadke

Automated MRI (Magnetic resonance Imaging) brain tumor segmentation is a difficult task due to the variance and complexity of tumors. In this paper, a statistical structure analysis based tumor segmentation scheme is presented, which focuses on the structural analysis on both tumorous and normal tissues. The basic concept is that local textures in the images can reveal the typical ‘regularities’ of biological structures. Thus, textural features have been extracted using co-occurrence matrix approach. By the analysis of level of correlation we can reduce the number of features to the only significant component .An artificial neural network and fuzzy c-means are used for classification. This approach is designed to investigate the differences of texture features among macroscopic lesion white matter (LWM), normal appearing white matter (NAWM) in magnetic resonance images (MRI) from patients with tumor and normal white matter (NWM).


2021 ◽  
Author(s):  
Gaia Amaranta Taberna ◽  
Jessica Samogin ◽  
Dante Mantini

AbstractIn the last years, technological advancements for the analysis of electroencephalography (EEG) recordings have permitted to investigate neural activity and connectivity in the human brain with unprecedented precision and reliability. A crucial element for accurate EEG source reconstruction is the construction of a realistic head model, incorporating information on electrode positions and head tissue distribution. In this paper, we introduce MR-TIM, a toolbox for head tissue modelling from structural magnetic resonance (MR) images. The toolbox consists of three modules: 1) image pre-processing – the raw MR image is denoised and prepared for further analyses; 2) tissue probability mapping – template tissue probability maps (TPMs) in individual space are generated from the MR image; 3) tissue segmentation – information from all the TPMs is integrated such that each voxel in the MR image is assigned to a specific tissue. MR-TIM generates highly realistic 3D masks, five of which are associated with brain structures (brain and cerebellar grey matter, brain and cerebellar white matter, and brainstem) and the remaining seven with other head tissues (cerebrospinal fluid, spongy and compact bones, eyes, muscle, fat and skin). Our validation, conducted on MR images collected in healthy volunteers and patients as well as an MR template image from an open-source repository, demonstrates that MR-TIM is more accurate than alternative approaches for whole-head tissue segmentation. We hope that MR-TIM, by yielding an increased precision in head modelling, will contribute to a more widespread use of EEG as a brain imaging technique.


2020 ◽  
Vol 43 (1) ◽  
pp. 29-45
Author(s):  
Alex Noel Joseph Raj ◽  
Ruban Nersisson ◽  
Vijayalakshmi G. V. Mahesh ◽  
Zhemin Zhuang

Nipple is a vital landmark in the breast lesion diagnosis. Although there are advanced computer-aided detection (CADe) systems for nipple detection in breast mediolateral oblique (MLO) views of mammogram images, few academic works address the coronal views of breast ultrasound (BUS) images. This paper addresses a novel CADe system to locate the Nipple Shadow Area (NSA) in ultrasound images. Here the Hu Moments and Gray-level Co-occurrence Matrix (GLCM) were calculated through an iterative sliding window for the extraction of shape and texture features. These features are then concatenated and fed into an Artificial Neural Network (ANN) to obtain probable NSA’s. Later, contour features, such as shape complexity through fractal dimension, edge distance from the periphery and contour area, were computed and passed into a Support Vector Machine (SVM) to identify the accurate NSA in each case. The coronal plane BUS dataset is built upon our own, which consists of 64 images from 13 patients. The test results show that the proposed CADe system achieves 91.99% accuracy, 97.55% specificity, 82.46% sensitivity and 88% F-score on our dataset.


2016 ◽  
Vol 2016 ◽  
pp. 1-10
Author(s):  
Yunjie Chen ◽  
Tianming Zhan ◽  
Ji Zhang ◽  
Hongyuan Wang

We propose a novel segmentation method based on regional and nonlocal information to overcome the impact of image intensity inhomogeneities and noise in human brain magnetic resonance images. With the consideration of the spatial distribution of different tissues in brain images, our method does not need preestimation or precorrection procedures for intensity inhomogeneities and noise. A nonlocal information based Gaussian mixture model (NGMM) is proposed to reduce the effect of noise. To reduce the effect of intensity inhomogeneity, the multigrid nonlocal Gaussian mixture model (MNGMM) is proposed to segment brain MR images in each nonoverlapping multigrid generated by using a new multigrid generation method. Therefore the proposed model can simultaneously overcome the impact of noise and intensity inhomogeneity and automatically classify 2D and 3D MR data into tissues of white matter, gray matter, and cerebral spinal fluid. To maintain the statistical reliability and spatial continuity of the segmentation, a fusion strategy is adopted to integrate the clustering results from different grid. The experiments on synthetic and clinical brain MR images demonstrate the superior performance of the proposed model comparing with several state-of-the-art algorithms.


The higher levels of blood glucose most often causes a metabolic disorder commonly called as Diabetes, scientifically as Diabetes Mellitus. A consequence of this is a major loss of vision and in long terms may eventually cause complete blindness. It initiates with swelling on blood vessels, formation of microaneurysms at the end of narrow capillaries. Haemorrhages due to rupture of small vessels and fluid leak causes exudates. The specialist examines it to diagnose and gives proper treatment. Fundus images are the fundamental tool for proper diagnosis of patients by medical experts. In this research work the fundus images are taken for processing, the neural network and support vector machine are trained for the proposed model. The features are extracted from the diabetic retinopathy image by using texture based algorithms such as Gabor, Local binary pattern and Gray level co-occurrence matrix for rating the level of diabetic retinopathy. The performance of all methods is calculated based on accuracy, precision, Recall and f-measure.


Sign in / Sign up

Export Citation Format

Share Document