Theoretical Study of Adsorption CO Molecule on Palladium-Doped Boron Nitride Nanotubes

2013 ◽  
Vol 662 ◽  
pp. 233-238 ◽  
Author(s):  
Miao Sun ◽  
Jing Wen Xu ◽  
Yu Cui ◽  
Gong Lian Wu ◽  
Hui Zhang ◽  
...  

By using the density functional theory (DFT), we have investigated CO molecules adsorbed on palladium atom doped (Pd-doped) (5, 5) and (6, 6) boron nitride nanotubes (BNNTs). In order to investigate the electronic and structural properties of all the research objects, we calculated the band gap (Eg), bind energy (Eb), and density of state (DOS). The results show that energy gaps of BNNTs reduced by doped impurity Pd atom, but there are no obvious changes with the tube diameter of Pd-BNNTs change. One impurity Pd atom substituting one B (PdB) or N atom (PdN) of pristine BNNTs can increase the reactivity with CO molecule. The energy gaps for CO molecule adsorption on the tube wall of Pd-BNNTs reduced. This indicates that Pd-doped BNNTs can be considered as nano gas sensitive material.

2022 ◽  
Vol 12 (2) ◽  
pp. 879
Author(s):  
Suleiman Nafiu ◽  
Vitus Atanga Apalangya ◽  
Abu Yaya ◽  
Edward Benjamin Sabi

The electrical properties and characteristics of the armchair boron nitride nanotube (BNNT) that interacts with the curcumin molecule as an anticancer drug were studied using ab initio calculations based on density functional theory (DFT). In this study, a (5,5) armchair BNNT was employed, and two different interactions were investigated, including the interaction of the curcumin molecule with the outer and inner surfaces of the BNNT. The adsorption of curcumin molecules on the investigated BNNT inside the surface is a more favorable process than adsorption on the outside surface, and the more persistent and stronger connection correlates with curcumin molecule adsorption in this case. Furthermore, analysis of the HOMO–LUMO gap after the adsorption process showed that the HOMO value increased marginally while the LUMO value decreased dramatically in the curcumin-BNNT complexes. As a result, the energy gaps between HOMO and LUMO (Eg) are narrowed, emphasizing the stronger intermolecular bonds. As a result, BNNTs can be employed as a drug carrier in biological systems to transport curcumin, an anticancer medication, and thereby improve its bioavailability.


Author(s):  
Дмитрий Сергеевич Ряшенцев ◽  
Евгений Анатольевич Беленков

В работе проведено теоретическое исследование новых полиморфных разновидностей нитрида бора, имеющих алмазоподобные структуры. В результате расчетов методом теории функционала плотности в градиентном приближении была установлена возможность устойчивого существования четырех новых структурных разновидностей нитрида бора: BN - LA4, BN - LA5, BN - LA6 и BN - LA7 . Энергия сублимации новых BN фаз варьируется в диапазоне от 16,85 до 17,84 эВ/(BN), ширина запрещенной зоны - от 4,34 до 6,07 эВ. Объемная плотность BN полиморфов изменяется от 3,020 до 3,452 г/см. The article presents a theoretical study of new polymorphic varieties of boron nitride with diamond-like structures. As a result of calculations by the density functional theory method in the gradient approximation, the possibility of stable existence of four new structural varieties of boron nitride: BN - LA4, BN - LA5 , BN - LA6, and BN - LA7 was established. The sublimation energy of new BN phases varies in the range from 16,85 to 17,84 eV/(BN), the band gap is from 4,34 to 6,07 eV. The bulk density of BN polymorphs varies from 3,020 to 3,452 g/cm.


2019 ◽  
Vol 233 (3) ◽  
pp. 431-447 ◽  
Author(s):  
Mahdi Rakhshi ◽  
Mohsen Mohsennia ◽  
Hossein Rasa

Abstract The adsorption energies (Ead), interaction distances, changes of geometric and electronic structures of XH3 (X=P or N) gas molecule adsorption on pristine, platinum (Pt) doped and vacancy-defected single-walled (8,8) boron nitride nanotubes (BNNTs) have been calculated using the density functional theory (DFT). The effect of the Pt doping on B and N sites (PtB,N-doped) and the B and N vacancy defects (VB,N-defected BNNT) on the sensing behavior of pristine (8,8) BNNTs toward PH3 and NH3 gases have been examined. According to the obtained results, PH3 and NH3 molecules were more likely to be absorbed on the PtB,N-doped and VN-defected BNNT with relatively higher Ead compared with the pristine and VB-defected BNNTs. Therefore the order of the obtained Ead were PtB-doped BNNT/NH3>PtB-doped BNNT/PH3>PtN-doped BNNT/NH3>PtN-doped BNNT/PH3 for the PtB,N-doped BNNTs, and VN-defected BNNT/NH3>VN-defected BNNT/PH3>VB-defected BNNT/NH3>VB-defected BNNT/PH3 for the VB,N-defected BNNTs systems. The partial density of states (PDOS) of the adsorption systems indicated the strong interaction between the adsorbed PH3 and NH3 molecules and the substrates, i.e. PtB,N-doped BNNT and VN-defected BNNT. Therefore, it can concluded that the PtB,N-doped and VN-defected BNNTs have potential applicability in the gas-sensing detection of PH3 and NH3 with good sensitivity.


2019 ◽  
Vol 22 (7) ◽  
pp. 470-482
Author(s):  
Samereh Ghazanfary ◽  
Fatemeh Oroojalian ◽  
Rezvan Yazdian-Robati ◽  
Mehdi Dadmehr ◽  
Amirhossein Sahebkar

Background: Boron Nitride Nanotubes (BNNTs) have recently emerged as an interesting field of study, because they could be used for the realization of developed, integrated and compact nanostructures to be formulated. BNNTs with similar surface morphology, alternating B and N atoms completely substitute for C atoms in a graphitic-like sheet with nearly no alterations in atomic spacing, with uniformity in dispersion in the solution, and readily applicable in biomedical applications with no obvious toxicity. Also demonstrating a good cell interaction and cell targeting. Aim and Objective: With a purpose of increasing the field of BNNT for drug delivery, a theoretical investigation of the interaction of Melatonin, Vitamin C, Glutathione and lipoic acid antioxidants using (9, 0) zigzag BNNTs is shown using density functional theory. Methods: The geometries corresponding to Melatonin, Vitamin C, Glutathione and lipoic acid and BNNT with different lengths were individually optimized with the DMOL3 program at the LDA/ DNP (fine) level of theory. Results: In the presence of external electric field Melatonin, Vitamin C, Glutathione and lipoic acid could be absorbed considerably on BNNT with lengths 22 and 29 Å, as the adsorption energy values in the presence of external electric field are considerably increased. Conclusion: The external electric field is an appropriate technique for adsorbing and storing antioxidants on BNNTs. Moreover, it is believed that applying the external electric field may be a proper method for controlling release rate of drugs.


2015 ◽  
Vol 17 (34) ◽  
pp. 22448-22454 ◽  
Author(s):  
K. Zberecki ◽  
R. Swirkowicz ◽  
J. Barnaś

Conventional and spin related thermoelectric effects in zigzag boron nitride nanoribbons are studied theoretically within the Density Functional Theory (DFT) approach.


RSC Advances ◽  
2015 ◽  
Vol 5 (28) ◽  
pp. 21823-21830 ◽  
Author(s):  
Xueli Zhang ◽  
Junqing Yang ◽  
Ming Lu ◽  
Xuedong Gong

The potential energetic materials, alkaline earth metal complexes of the pentazole anion (M(N5)2, M = Mg2+, Ca2+, Sr2+and Ba2+), were studied using the density functional theory.


2021 ◽  
Vol 37 (4) ◽  
pp. 805-812
Author(s):  
Ahissandonatien Ehouman ◽  
Adjoumanirodrigue Kouakou ◽  
Fatogoma Diarrassouba ◽  
Hakim Abdel Aziz Ouattara ◽  
Paulin Marius Niamien

Our theoretical study of stability and reactivity was carried out on six (06) molecules of a series of pyrimidine tetrazole hybrids (PTH) substituted with H, F, Cl, Br, OCH3 and CH3 atoms and groups of atoms using the density function theory (DFT). Analysis of the thermodynamic formation quantities confirmed the formation and existence of the series of molecules studied. Quantum chemical calculations at the B3LYP / 6-311G (d, p) level of theory determined molecular descriptors. Global reactivity descriptors were also determined and analyzed. Thus, the results showed that the compound PTH_1 is the most stable, and PTH_5 is the most reactive and nucleophilic. Similarly, the compound PTH_4 is the most electrophilic. The analysis of the local descriptors and the boundary molecular orbitals allowed us to identify the preferred atoms for electrophilic and nucleophilic attacks.


2019 ◽  
Vol 16 (1) ◽  
pp. 299-325
Author(s):  
Atef Elmahdy ◽  
Hayam Taha ◽  
Mohamed Kamel ◽  
Menna Tarek

The influence of mechanical bending to tuning the hydrogen storage of Ni-functionalized of zigzag type of boron nitride nanotubes (BNNTs) has been investigated using density functional theory (DFT) with reference to the ultimate targets of the US Department of Energy (DOE). Single Ni atoms prefer to bind strongly at the axial bridge site of BN nanotube, and each Ni atom bound on BNNT may adsorb up to five, H2 molecules, with average adsorption energies per hydrogen molecule of )-1.622,-0.527 eV( for the undeformed B40N40-? = 0 , ) -1.62 , 0-0.308 eV( for the deformed B40N40-? = 15, ) -1.589,  -0.310 eV( for the deformed B40N40-? = 30, and ) -1.368-  -0.323 eV( for the deformed B40N40-? = 45 nanotubes respectively. with the H-H bonds between H2 molecules significantly elongated. The curvature attributed to the bending angle has effect on average adsorption energies per H2 molecule. With no metal clustering, the system gravimetric capacities are expected to be as large as 5.691 wt % for 5H2 Ni B40N40-? = 0, 15, 30, 45. While the desorption activation barriers of the complexes nH2 + Ni B40N40-? = 0 (n = 1-4) are outside the (DOE) domain (-0.2 to -0.6 eV), the complexes nH2 + Ni- B40N40-? = 0 (n = 5) is inside this domain. For nH2 + Ni- B40N40-? = 15, 30, 45 with (n = 1-2) are outside the (DOE) domain, the complexes nH2 + Ni- B40N40-? = 15, 30, 45 with (n = 3-5) are inside this domain. The hydrogen storage of the irreversible 4H2+ Ni- B40N40-? = 0, 2H2+ Ni- B40N40-? = 15, 30, 45 and reversible 5H2+ Ni- B40N40-? = 0, 3H2+ Ni- B40N40-? = 15, 30, 45 interactions are characterized in terms of density of states, pairwise and non-pairwise additivity, infrared, Raman, electrophilicity and molecular electrostatic potentials. Our calculations expect that 5H2- Ni- B40N40-j = 0, 15, 30, 45 complexes are promising hydrogen storage candidates.


Sign in / Sign up

Export Citation Format

Share Document