Near Surface Research and Excitation Horizon Prediction Based on Old River Course of Xiaoqing River in Shan Dong

2013 ◽  
Vol 664 ◽  
pp. 94-98
Author(s):  
Guang De Zhang

Following deepened exploration and development in Shengli exploration area, seismic data requirements are also getting higher and higher. However, in recent years the difference of Xiaoqing river on both sides have made us know that the importance of this problem. In view of the above, this task is aimed at quaternary shallow of old river course within Xiaoqing River. Our analysis of lithology and sedimentary characteristics are using static cone penetration test and rock core exploration method, and we want to reappear near surface deposition of old river course within Xiaoqing River. The research is close combined with the exploration demand and theoretical study, so it has important theoretical and practical significance.

Geophysics ◽  
2020 ◽  
Vol 85 (2) ◽  
pp. V169-V181 ◽  
Author(s):  
Daniele Colombo ◽  
Diego Rovetta ◽  
Ernesto Sandoval-Curiel ◽  
Apostolos Kontakis

We have developed a new framework for performing surface-consistent amplitude balancing and deconvolution of the near-surface attenuation response. Both approaches rely on the early arrival waveform of a seismic recording, which corresponds to the refracted or, more generally speaking, to the transmitted energy from a seismic source. The method adapts standard surface-consistent amplitude compensation and deconvolution to the domain of refracted/transmitted waves. A sorting domain specific for refracted energy is extended to the analysis of amplitude ratios of each trace versus a reference average trace to identify amplitude residuals that are inverted for surface consistency. The residual values are either calculated as a single scalar value for each trace or as a function of frequency to build a surface-consistent deconvolution operator. The derived operators are then applied to the data to obtain scalar amplitude balancing or amplitude balancing with spectral shaping. The derivation of the operators around the transmitted early arrival waveforms allows for deterministically decoupling the near-surface attenuation response from the remaining seismic data. The developed method is fully automatic and does not require preprocessing of the data. As such, it qualifies as a standard preprocessing tool to be applied at the early stages of seismic processing. Applications of the developed method are provided for a case in a complex, structure-controlled wadi, for a seismic time-lapse [Formula: see text] land monitoring case, and for an exploration area with high dunes and sabkhas producing large frequency-dependent anomalous amplitude responses. The new development provides an effective tool to enable better reservoir characterization and monitoring with land seismic data.


Geophysics ◽  
1983 ◽  
Vol 48 (7) ◽  
pp. 975-996 ◽  
Author(s):  
L. A. LeSchack ◽  
J. E. Lewis

The Shallo‐Temp® survey is an inexpensive and rapid “first look” geophysical technique that is useful in planning the more traditional and costly reconnaissance drilling geothermal exploration programs. The technique is based on making many soil temperature measurements at 2-m depths over a given exploration area and correcting these measurements for the effects of elevation and surface geologic and meteorologic conditions. Corrections for surface conditions are made with an “annual wave correction model.” The output from the model is the normally expected 2-m temperature for the given site at the date for which input data were provided. The difference between the measured and computed 2-m temperature data represents effects of geothermal heat flow. A Shallo‐Temp residual map is compared both to a 2-m temperature map for a specific date (September, 1977) and to a mean annual 2-m temperature map for the Coso known geothermal resource area producing the same anomaly pattern in each case. Additional case history studies at Upsal Hogback in Nevada, and Animus Valley in New Mexico provide evidence to support the applicability of the Shallo‐Temp technique throughout the Basin and Range Province. The technique developed is not designed to replace reconnaissance drilling but rather help focus standard reconnaissance programs. The two potentially most reliable applications of the technique are in extending trends where standard reconnaissance holes have been drilled or filling in detail between widely spaced holes, and in surveying for near‐surface anomalies that might be developed for direct heating applications. ®Registered trademark of LeSchack Associates, Ltd.


Author(s):  
A. Livsey

South Sumatra is considered a mature exploration area, with over 2500MMbbls of oil and 9.5TCF of gas produced. However a recent large gas discovery in the Kali Berau Dalam-2 well in this basin, highlights that significant new reserve additions can still be made in these areas by the re-evaluation of the regional petroleum systems, both by identification of new plays or extension of plays to unexplored areas. In many mature areas the exploration and concession award history often results in successively more focused exploration programmes in smaller areas. This can lead to an increased emphasis on reservoir and trap delineation without further evaluation of the regional petroleum systems and, in particular, the hydrocarbon charge component. The Tungkal PSC area is a good example of an area that has undergone a long exploration history involving numerous operators with successive focus on block scale petroleum geology at the expense of the more regional controls on hydrocarbon prospectivity. An improved understanding of hydrocarbon accumulation in the Tungkal PSC required both using regional petroleum systems analysis and hydrocarbon charge modelling. While the Tungkal PSC operators had acquired high quality seismic data and drilled a number of wells, these were mainly focused on improving production from the existing field (Mengoepeh). More recent exploration-driven work highlighted the need for a new look at the hydrocarbon charge history but it was clear that little work had been done in the past few year to better understand exploration risk. This paper summarises the methodology employed and the results obtained, from a study, carried out in 2014-15, to better understand hydrocarbon accumulation within the current Tungkal PSC area. It has involved integration of available well and seismic data from the current and historical PSC area with published regional paleogeographic models, regional surface geology and structure maps, together with a regional oil generation model. This approach has allowed a better understanding of the genesis of the discovered hydrocarbons and identification of areas for future exploration interest.


Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. U67-U76 ◽  
Author(s):  
Robert J. Ferguson

The possibility of improving regularization/datuming of seismic data is investigated by treating wavefield extrapolation as an inversion problem. Weighted, damped least squares is then used to produce the regularized/datumed wavefield. Regularization/datuming is extremely costly because of computing the Hessian, so an efficient approximation is introduced. Approximation is achieved by computing a limited number of diagonals in the operators involved. Real and synthetic data examples demonstrate the utility of this approach. For synthetic data, regularization/datuming is demonstrated for large extrapolation distances using a highly irregular recording array. Without approximation, regularization/datuming returns a regularized wavefield with reduced operator artifacts when compared to a nonregularizing method such as generalized phase shift plus interpolation (PSPI). Approximate regularization/datuming returns a regularized wavefield for approximately two orders of magnitude less in cost; but it is dip limited, though in a controllable way, compared to the full method. The Foothills structural data set, a freely available data set from the Rocky Mountains of Canada, demonstrates application to real data. The data have highly irregular sampling along the shot coordinate, and they suffer from significant near-surface effects. Approximate regularization/datuming returns common receiver data that are superior in appearance compared to conventional datuming.


Geophysics ◽  
2015 ◽  
Vol 80 (2) ◽  
pp. WA61-WA67 ◽  
Author(s):  
Zhaoyun Zong ◽  
Xingyao Yin ◽  
Guochen Wu ◽  
Zhiping Wu

Elastic inverse-scattering theory has been extended for fluid discrimination using the time-lapse seismic data. The fluid factor, shear modulus, and density are used to parameterize the reference medium and the monitoring medium, and the fluid factor works as the hydrocarbon indicator. The baseline medium is, in the conception of elastic scattering theory, the reference medium, and the monitoring medium is corresponding to the perturbed medium. The difference in the earth properties between the monitoring medium and the baseline medium is taken as the variation in the properties between the reference medium and perturbed medium. The baseline and monitoring data correspond to the background wavefields and measured full fields, respectively. And the variation between the baseline data and monitoring data is taken as the scattered wavefields. Under the above hypothesis, we derived a linearized and qualitative approximation of the reflectivity variation in terms of the changes of fluid factor, shear modulus, and density with the perturbation theory. Incorporating the effect of the wavelet into the reflectivity approximation as the forward solver, we determined a practical prestack inversion approach in a Bayesian scheme to estimate the fluid factor, shear modulus, and density changes directly with the time-lapse seismic data. We evaluated the examples revealing that the proposed approach rendered the estimation of the fluid factor, shear modulus, and density changes stably, even with moderate noise.


2013 ◽  
Vol 32 (3) ◽  
pp. 308-314
Author(s):  
Phil Sirles ◽  
Jacob Sheehan ◽  
Nicole Pendrigh
Keyword(s):  

2001 ◽  
Vol 15 (17n19) ◽  
pp. 683-687
Author(s):  
A. SILVA-CASTILLO ◽  
F. PEREZ-RODRIGUEZ

We have applied the 45° reflectometry for the first time to study exciton-polaritons in quantum wells. The 45° reflectometry is a new polarization-modulation technique, which is based on the measurement of the difference [Formula: see text] between the p-polarization reflectivity (Rp) and the squared s-polarization reflectivity [Formula: see text] at an angle of incidence of 45°. We show that [Formula: see text] spectra may provide qualitatively new information on the exciton-polariton modes in a quantum well. These optical spectra turn out to be very sensitive to the zeros of the dielectric function along the quantum-well growth direction and, therefore, allow to identify the resonances associated with the Z exciton-polariton mode. We demonstrate that 45° reflectometry could be a powerful tool for studying Z exciton-polariton modes in near-surface quantum wells, which are difficult to observe in simple spectra of reflectivity Rp


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Huan-Hua Xu ◽  
Zhen-Hong Jiang ◽  
Cong-Shu Huang ◽  
Yu-Ting Sun ◽  
Long-Long Xu ◽  
...  

Abstract Background OPD and OPD' are the two main active components of Ophiopogon japonicas in Shenmai injection (SMI). Being isomers of each other, they are supposed to have similar pharmacological activities, but the actual situation is complicated. The difference of hemolytic behavior between OPD and OPD' in vivo and in vitro was discovered and reported by our group for the first time. In vitro, only OPD' showed hemolysis reaction, while in vivo, both OPD and OPD' caused hemolysis. In vitro, the primary cause of hemolysis has been confirmed to be related to the difference between physical and chemical properties of OPD and OPD'. In vivo, although there is a possible explanation for this phenomenon, the one is that OPD is bio-transformed into OPD' or its analogues in vivo, the other one is that both OPD and OPD' were metabolized into more activated forms for hemolysis. However, the mechanism of hemolysis in vivo is still unclear, especially the existing literature are still difficult to explain why OPD shows the inconsistent hemolysis behavior in vivo and in vitro. Therefore, the study of hemolysis of OPD and OPD' in vivo is of great practical significance in response to the increase of adverse events of SMI. Methods Aiming at the hemolysis in vivo, this manuscript adopted untargeted metabolomics and lipidomics technology to preliminarily explore the changes of plasma metabolites and lipids of OPD- and OPD'-treated rats. Metabolomics and lipidomics analyses were performed on ultra-high performance liquid chromatography (UPLC) system tandem with different mass spectrometers (MS) and different columns respectively. Multivariate statistical approaches such as principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA) were applied to screen the differential metabolites and lipids. Results Both OPD and OPD' groups experienced hemolysis, Changes in endogenous differential metabolites and differential lipids, enrichment of differential metabolic pathways, and correlation analysis of differential metabolites and lipids all indicated that the causes of hemolysis by OPD and OPD' were closely related to the interference of phospholipid metabolism. Conclusions This study provided a comprehensive description of metabolomics and lipidomics changes between OPD- and OPD'-treated rats, it would add to the knowledge base of the field, which also provided scientific guidance for the subsequent mechanism research. However, the underlying mechanism require further research.


Sign in / Sign up

Export Citation Format

Share Document