Polymer Based Treatments Applied on Recycled Concrete Aggregates

2013 ◽  
Vol 687 ◽  
pp. 514-519 ◽  
Author(s):  
Valerie Spaeth ◽  
Assia Djerbi Tegguer

The recycling of concrete, bricks and masonry rubble as concrete aggregates is an important way to contribute to a sustainable material flow. However, there are still various uncertainties limiting the widespread use of recycled concrete aggregates (RCA). The fluctuations in the composition of grade recycled aggregates and their influence on the properties of fresh and hardened concrete are of particular concern regarding the use of RCA. So, the reuse of RCA is still limited. That’s why an efficient polymer based treatment is proposed in order to reuse RCA easier.

2018 ◽  
Vol 8 (11) ◽  
pp. 2149 ◽  
Author(s):  
Eleftherios Anastasiou ◽  
Michail Papachristoforou ◽  
Dimitrios Anesiadis ◽  
Konstantinos Zafeiridis ◽  
Eirini-Chrysanthi Tsardaka

The waste produced from ready-mixed concrete (RMC) industries poses an environmental challenge regarding recycling. Three different waste products form RMC plants were investigated for use as recycled aggregates in construction applications. Crushed hardened concrete from test specimens of at least 40 MPa compressive strength (HR) and crushed hardened concrete from returned concrete (CR) were tested for their suitability as concrete aggregates and then used as fine and coarse aggregate in new concrete mixtures. In addition, cement sludge fines (CSF) originating from the washing of concrete trucks were tested for their properties as filler for construction applications. Then, CSF was used at 10% and 20% replacement rates as a cement replacement for mortar production and as an additive for soil stabilization. The results show that, although there is some reduction in the properties of the resulting concrete, both HR and CR can be considered good-quality recycled aggregates, especially when the coarse fraction is used. Furthermore, HR performs considerably better than CR both as coarse and as fine aggregate. CSF seems to be a fine material with good properties as a filler, provided that it is properly crushed and sieved through a 75 μm sieve.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7499
Author(s):  
Miren Etxeberria

The fabrication of conventional concrete, as well as remains from demolition, has a high environmental impact. This paper assessed the eco-efficiency of concrete made with uncarbonated recycled concrete aggregates (RCA) and fly ash (FA). Two concrete series were produced with an effective water/cement ratio of 0.50 (Series 1) and 0.40 (Series 2). In both series, concretes were produced using 0% and 50% of RCA with 0%, 25% and 50% FA. After analysing the compressive strength, and carbonation and chloride resistance of those concretes, their eco-efficiency based on the binder intensity and CO2-eq intensity was assessed. We found that the use of 50% uncarbonated RCA improved the properties of concretes produced with FA with respect to using natural aggregates. The concrete made of 25% FA plus RCA was considered the most eco-efficient based on the tests of compressive, carbonation and chloride properties with the values of 4.1 kg CO2 m−3 MPa−1, 76.3 kg CO2 m−3 mm−1 year0.5 and 0.079 kg CO2 m−3 C−1, respectively. The uncarbonated RCA improved carbonation resistance, and FA improved chloride resistance. It can be concluded that the use of 50% un-carbonated RCA combined with FA considerably enhanced the properties of hardened concrete and their eco-efficiency with respect to concretes produced with natural aggregates.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 209
Author(s):  
Adilson C. Paula Junior ◽  
Cláudia Jacinto ◽  
Thaís M. Oliveira ◽  
Antonio E. Polisseni ◽  
Fabio M. Brum ◽  
...  

The search for environmental preservation and conservation of natural resources gives rise to new concepts and viable technical solutions on the path to sustainable development. In this context, this study’s main objective is to analyse the influence of recycled concrete aggregates (RCAs) on the development of pervious concrete, whose use as a floor covering represents an excellent device to mitigate the urban soil sealing phenomena. For this, mechanical and hydraulic tests were carried out, in addition to microstructural analyses and the assessment of its environmental performance. The results obtained were compared to reference studies also involving the incorporation of recycled aggregates. A pilot-scale case study was conducted, involving a parking space lined with pervious concrete moulded “in situ”. In laboratory tests, permeability coefficients and mechanical strengths compatible with the literature and above the normative limit for light traffic were found. The case study demonstrated higher permeability than in the laboratory, but the flexural strength was lower, being indicated only for pedestrian traffic. The environmental assessment showed that the RCA represents a positive contribution to the environmental performance of pervious concrete. Still, attention should be given to the recycled aggregate transport distance between the concrete plant and the RCA treatment plant.


2021 ◽  
Vol 13 (11) ◽  
pp. 6277
Author(s):  
Ibrahim Sharaky ◽  
Usama Issa ◽  
Mamdooh Alwetaishi ◽  
Ahmed Abdelhafiz ◽  
Amal Shamseldin ◽  
...  

In this study, the recycled concrete aggregates and powder (RCA and RCP) prepared from basaltic concrete waste were used to replace the natural aggregate (NA) and cement, respectively. The NA (coarse and fine) was replaced by the recycled aggregates with five percentages (0%, 20%, 40%, 60% and 80%). Consequently, the cement was replaced by the RCP with four percentages (0%, 5%, 10% and 20%). Cubes with 100 mm edge length were prepared for all tests. The compressive and tensile strengths (fcu and ftu) and water absorption (WA) were investigated for all mixes at different ages. Partial substitution of NA with recycled aggregate reduced the compressive strength with different percentages depending on the type and source of recycled aggregate. After 28 days, the maximum reduction in fcu value was 9.8% and 9.4% for mixtures with coarse RCA and fine RCA (FRCA), respectively. After 56 days, the mixes with 40% FRCA reached almost the same fcu value as the control mix (M0, 99.5%). Consequently, the compressive strengths of the mixes with 10% RCA at 28 and 56 days were 99.3 and 95.2%, respectively, compared to those of M0. The mixes integrated FRCA and RCP showed higher tensile strengths than the M0 at 56 d with a very small reduction at 28 d (max = 3.4%). Moreover, the fcu and ftu values increased for the late test ages, while the WA decreased.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4378
Author(s):  
Ana Elisabete Paganelli Guimarães de Avila Jacintho ◽  
Ivanny Soares Gomes Cavaliere ◽  
Lia Lorena Pimentel ◽  
Nádia Cazarim Silva Forti

This paper presents a study with concretes produced with natural aggregates, recycled concrete aggregates (RCA) and waste porcelain aggregates (WPA). The study analyzed the influence of recycled aggregates in the mechanical properties of conventional concretes and evaluated the difference between measured and predicted values of elasticity modulus. The incorporation of WPA in concrete showed better mechanical results compared to the concretes produced with RCA. Measured elasticity moduli were lower than moduli predicted by NBR 6118:2014 and fib Model Code 2010, while measured results were greater than values predicted by Eurocode 2:2004 and ACI 318:2014, as expected, which indicated the safety of the latter two standards.


2014 ◽  
Vol 634 ◽  
pp. 151-162 ◽  
Author(s):  
Diogo Pedro ◽  
Jorge de Brito ◽  
Luís Evangelista

This work intends to evaluate the (mechanical and durability) performance of concrete made with coarse recycled concrete aggregates (CRCA) obtained using two crushing processes: primary crushing (PC) and primary plus secondary crushing (PSC). This analysis intends to select the most efficient production process of recycled aggregates (RA). The RA used here resulted from precast products (P), with strength classes of 20 MPa, 45 MPa and 65 MPa, and from laboratory-made concrete (L) with the same compressive strengths. The evaluation of concrete was made with the following tests: compressive strength; splitting tensile strength; modulus of elasticity; carbonation resistance; chloride penetration resistance; capillary water absorption; and water absorption by immersion. These findings contribute to a solid and innovative basis that allows the precasting industry to use without restrictions the waste it generates.


2015 ◽  
Vol 10 (1) ◽  
pp. 83-90
Author(s):  
Jozef Junak ◽  
Nadezda Stevulova

Abstract This paper presents the results obtained from the research focused on the utilization of crushed concrete waste aggregates as a partial or full replacement of 4/8 and 8/16 mm natural aggregates fraction in concrete strength class C 16/20. Main concrete characteristics such as workability, density and compressive strength were studied. Compressive strength testing intervals for samples with recycled concrete aggregates were 2, 7, 14 and 28 days. The amount of water in the mixtures was indicative. For mixture resulting consistency required slump grade S3 was followed. Average density of all samples is in the range of 2250 kg/m3 to 2350 kg/m3. The highest compressive strength after 28 days of curing, 34.68 MPa, reached sample, which contained 100% of recycled material in 4/8 mm fraction and 60% of recycled aggregates in 8/16 mm fraction. This achieved value was only slightly different from the compressive strength 34.41 MPa of the reference sample.


2021 ◽  
Author(s):  
Talina Zeidan ◽  
Xavier Farina

<p>In Belgium, the presence of numerous quarries in the Walloon region makes recycled concrete aggregates (RCA) less attractive for structural concrete applications: since the natural aggregates are at reach, it is unprofitable from both a financial and an environmental aspect to use RCA. In addition, the supply of recycled aggregates on the Belgian market is lacking. Only a few recyclers produce type A+ RCA, which could be used in ready-mix concrete, but tend to keep them for their own productions. Furthermore, although the revised Belgian national concrete standard (NBN B 15- 001) allows cast-in-situ concrete to contain higher fractions of recycled aggregates, there is presently no concrete supplier yet certified to produce concrete with recycled aggregates. One should finally note the lack of stimulation or even mandatory incentives by the Authorities to promote the use of RCA. The aim of this paper is to identify the various reasons behind RCA limitations in Belgium and to suggest solutions to overcome them.</p>


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 232
Author(s):  
Natt Makul ◽  
Roman Fediuk ◽  
Mugahed Amran ◽  
Abdullah M. Zeyad ◽  
Gunasekaran Murali ◽  
...  

Recycled concrete aggregates (RCA) are used in existing green building composites to promote the environmental preservation of natural coarse aggregates (NCA). Besides, the use of RCA leads to potential solutions to the social and economic problems caused by concrete waste. It is found that insufficient information on the longevity and sustainability of RCA production is a serious issue that requires close attention due to its impact on changing aspects of the sector. However, more attention has been paid to explaining the effect of RCA on concrete durability, as well as the properties of fresh and hardened concrete. Therefore, this study aims to provide a critical review on the RCAs for the production of high-performances concrete structures. It begins by reviewing the source, originality, types, prediction of service life, features and properties of RCA, as well as the effect of RCA on concrete performance. In addition, this literature review summarizes the research findings to produce complete insights into the potential applications of RCA as raw, renewable, and sustainable building materials for producing greener concrete composite towards industrializing ecofriendly buildings today. Further, it has also highlighted the differences in the current state of knowledge between RCAs and NCAs, and offers several future research suggestions. Through this critical and analytical study, it can be said that RCA has the possible use in the production of high-performance structural concrete depending on the source and type of recycled aggregate while the RCA can be used widely and safely to produce traditional green concrete.


Sign in / Sign up

Export Citation Format

Share Document